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Abstract 

The challenge addressed in this study is: ‘What is a suitable description of problem solving that 
can capture important cognitive and performance information about an individual’s problem 
solving, yet provide rapid and meaningful comparisons within and across science domains and 
educational systems?’ While such a measure would have practical benefits at many levels of 
education, there are also theoretical reasons to support these developments. In this manuscript we 
first discuss the need for developing assessments of problem solving and focus on creating 
metrics to track the development of these skills over prolonged periods of time. Next, we 
describe the IMMEX problem solving environment that provides a wide range of online problem 
solving experiences for students from middle school through medical school. Then, by using a 
combination of machine learning tools, we describe a value-based metric of problem solving that 
allows assessment of problem solving across scientific domains, levels of education, and 
educational systems. Lastly, we show how this measure can be used to identify classrooms where 
students’ progress at developing these skills is not progressing as predicted by other achievement 
scores.  

Introduction 

Supporting students’ ability to effectively solve problems is viewed as a national educational 
priority. However, on the most recent Program for International Student Assessment [PISA] test, 
American 15-year olds ranked 24th out of 29 developed nations in Mathematics literacy and 
problem-solving (Augustine, 2005, OECD, 2004). While all stakeholders in science education 
recognize the need for developing effective problem solvers, classroom teachers find it difficult 
to quantify students’ strategic thinking in ways that can rapidly inform instruction (Pellegrino, et 
al. 2001). The current challenges for such assessments relate to the cognitive and non-cognitive 
differences among students, the difficulty of generalizing across problem solving content 
domains, the design and development of appropriate tasks, and finally the speed, scale, and 
conceptual accessibility of assessment data.  

Strategic problem solving is influenced by many variables, such as: students’ prior knowledge 
and skill, cognitive and metacognitive abilities, task characteristics, gender, ethnicity, classroom 
environment (Fennema, et al. 1998), as well as affective variables such as motivation and self 
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efficacy (Mayer, 1998). An additional complication is that the acquisition of problem solving 
skills is a dynamic process characterized by transitional changes over time as experience is 
gained and learning occurs (Lajoie, 2003).  

While the challenges for developing assessments of problem solving are substantial, the real-
time generation and reporting of metrics of problem solving efficiency and effectiveness could 
fulfill many of the purposes for which educational assessments are used such as grading and 
feedback for improving learning. (Bennett, 1998, Atkin, et al. 2001). In addition, such metrics 
could help target interventions for students, focus professional development activities for 
teachers, and influence training, implementation and support decisions throughout school 
districts (Spillane, et al. 2002). 

An important starting framework for any assessment is construct validity (Messick, 1989). The 
tasks from which behaviors are extracted as evidence of skill acquisition must be accurate, 
appropriate for the audience and appropriate for the cognitive / behavioral constructs purported 
to being measured. The assessments concurrently developed should have concurrent, divergent, 
discriminant and predictive validity and be reliable, scalable, adaptable and extensible. They 
should also be understandable by teachers and students (Reckase, 1998).  

The groundings for this study are based on the theories of strategy development (Anderson, 
VanLehn, 1996, Schuun & Reder, 2001, Schuun et al., 2001, Haider & Frensch, 1996) and skill 
acquisition (Ericcson) and can be organized around the following principles: 

• Each individual selects the best strategy for them on a particular problem and individuals 
might vary because of learning in the domain and/or process parameter differences;  

• People adapt strategies to changing rates of success. Note that the base rate of success is 
not the same for all people on a task or for an individual on different tasks.  

• Paths of strategy development emerge as students gain experience; and, 
• Improvement in performance is accompanied by an increase in speed and reduction in the 

data processed. 
We believe that the paths that students employ while navigating an IMMEX task provide 
evidence of a strategy, which we define as a sequence of steps needed to identify, interpret and 
use appropriate and necessary facts to reach a logical conclusion or to eliminate or discount other 
reasonable conclusions. From these strategies a student demonstrates understanding by 
consistently, and efficiently deriving logical problem solutions.  

Our framework for assessing problem solving skills uses and addresses the following metrics: 
• How well / rapidly were the problems solved? (easy to assess, but contains little strategic 

information) 
• Can hard / easy problems be solved? (more difficult to assess; IRT estimates can be 

useful) 
• What problem solving strategy was used? (more difficult to assess) 
• Are the problem solving strategies improving with practice? (more difficult to assess) 
• What strategy will the student next use? (hard to assess) 

And then of course is the challenge of how to generalize across domains and educational 
systems.  
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Methods 

What is IMMEX? 
The IMMEX™ Project upon which this proposal is based, hosts an online problem solving 
environment and develops and delivers scientific simulations and probabilistic models of 
learning trajectories that help position students’ scientific problem-solving skills upon a 
continuum of experience (Stevens et al, 2004, 2005, 2006).  

To illustrate the system, a sample chemistry task is called Hazmat which provides evidence of a 
student's ability to conduct qualitative chemical analyses. The problem begins with a multimedia 
presentation, explaining that an earthquake caused a chemical spill in the stockroom and the 
student's challenge is to identify the chemical. The problem space contains 22 menu items for 
accessing a Library of terms, the Stockroom Inventory, or for performing Physical or Chemical 
Testing. When the student selects a menu item, she verifies the test requested and is then shown 
a presentation of the test results (e.g. a precipitate forms in the liquid) When students feel they 
have gathered the information to identify the unknown they can attempt to solve the problem.  

 
Figure 1. This screen shot of Hazmat shows the menu items down the left side of the main 
“Hazmat” window on the screen and a sample test result (the result of a precipitation reaction). 

Students access resource data in an open-ended manner from experimental results, reference 
materials, advice from friends and / or experts, etc. to solve the problem. The IMMEX™ 
database serializes timestamps of how students use these resources.  

For assessments and measurements to be useful, the tasks must be accurate, appropriate for the 
audience and appropriate for the constructs purported to being measured (Mislevy et al, 2001).  
The construction of IMMEX problems follows design specifications that emphasize valid and 
current content, and ensure that there are many ways to succeed or fail in problem solving 
(Stevens & Palacio-Cayetano, 2001). 

Layers of IMMEX Assessments 
Behind the scenes, IMMEX uses rich machine learning tools to build models of student’s 
performance that address the frameworks above. The solve rates, time spent on each case of a 
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problem set and the number of problems performed are all reported in real-time to both students 
and teachers.  

The next layer takes advantage of the multiple problems in each problem set that vary in 
difficulty. Hazmat, for instance has 38 ‘clones’ that contain acids, bases, and different 
compounds that may or may not show a positive color by flame testing. From the different item 
difficulties, and thousands of student performances, we have developed item response theory 
models (IRT) that provide ability estimates that take into account not only if a problem was 
solved or not, but also the difficulty of the problem.  

Item Response Theory Estimates of Student Ability.  
The first layer of our data analytic system uses estimates of student ability (theta) as determined 
by IRT. Item response theory relates characteristics of items (item parameters) and 
characteristics of individuals (latent traits) to the probability of a positive response (such as 
solving a case). Unlike classical test theory item statistics, which depend fundamentally on the 
subset of items and persons examined, IRT item and person parameters are invariant. This makes 
it possible to examine the contribution of items individually as they are added and removed from 
a test. It also allows researchers to conduct rigorous tests of measurement equivalence across 
experimental groups.  

Using IRT, pooled data for students are used to calibrate all of the items and to obtain a 
proficiency estimate for each student (Figure 2).  

 
Figure 2. Levels of Problem Difficulty. The case item difficulties were determined by IRT 
analysis of 28,878 student performances. The problem difficulty begins with the easiest at the 
bottom and increases towards the top. The distribution of student abilities is shown on the left 
with the highest ability students at the top, decreasing downwards. For each graph, M indicates 
the mean, S, the standard deviation, and T two standard deviations. 
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As expected, the flame test negative compounds are more difficult for students because both the 
anion and cation have to be identified through a more extensive chemical analysis. The 
distribution of student abilities provides an important validity check of the appropriateness of the 
content for the intended audience, and suggests that the cases in the problem set present an 
appropriate range of difficulties to provide reliable estimates of student ability by IRT. However, 
while IRT is useful for ranking the students by the effectiveness of their problem solving, it does 
not provide a strategic measure of a student’s problem solving performance. 

 

The next layer of IMMEX analytic tools, artificial neural networks, extends the IRT measures by 
providing evidence as to how the students solved the problem and where the problem solving 
process succeeded or failed.  In this regard we begin to answer whether the tasks are appropriate 
for detecting strategic differences between students. 

Artificial Neural Networks 
As students navigate the problem spaces, the IMMEX database collects timestamps of each 
student selection. The most common student approaches (i.e. strategies) for solving Hazmat are 
identified with competitive, self-organizing artificial neural networks using the students’ 
selections of menu items as they solve the problem as the input data (Kohonen, 2001, Stevens et 
al, 2004, 2005). The result is a topological ordering of the neural network nodes according to the 
structure of the data where geometric distance becomes a metaphor for strategic similarity. Often 
we use a 36-node neural network, in which each node is visualized by a histogram (Figure 2 A). 
The histograms show the frequency of items selected for student performances classified at that 
node. Strategies so defined consist of items that are always selected for performances at that 
node (i.e. with a frequency of 1) as well as items ordered more variably. 

Nodal Solve Rates (%) 
61 65 58 47 37 36
64 64 53 48 47 42
64 70 75 57 53 51
74 83 76 59 58 53
24 80 83 72 61 59
72 81 80 58 55 56 

Figure. 3. Sample Neural Network Nodal Analysis for Identifying Strategies. a.) The 
selection frequency of each action (identified by the labels) is plotted for the performances at 
node 15, thus characterizing the performances for this node and relating them to performances at 
neighboring nodes. The nodes are numbered in rows, 1-6, 7-12, etc. This figure also shows the 
item selection frequencies for all 36 nodes (Stevens et al., 2004, 2005, 2006). b) This figure 
shows the solution rate for each node with the lowest solved rates in black and the highest in 
gray.  

In Figure 3A there is also a composite ANN topology map of performances generated during the 
self-organizing training process. Each of the 36 matrix nodes represents where similar student 
problem solving performances were automatically clustered by the ANN procedure. As the neural 
network was trained with vectors representing the items students selected, it is not surprising that a 
topology developed based on the quantity of items. For instance, the upper right hand of the map 
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(nodes 6, 12) represents strategies where a large number of tests have been ordered, whereas the 
lower left corner contains strategies where few tests have been ordered. As shown in Figure 3b, not 
all strategies result in the same solve outcomes. 

Once ANN’s are trained and the strategies represented by each node defined, new performances can 
be tested on the trained neural network, and the node (strategy) that best matches the new 
performance can be identified and reported. The strategies can be aggregated by class, grade level, 
school, or gender, and related to other achievement and demographic measures.  

Hidden Markov Models 
On their own, ANN-defined categories provide a strategic snapshot of any one particular 
student’s performance, but they really don’t provide much information on whether or not the 
students are improving their problem solving skills. To obtain this information, IMMEX borrows 
the ideas of Hidden Markov Modeling from digital signal processing. First we postulate that 
there are a number of states that students will go through as they begin to refine their problem 
solving skills; this often emerges from the cognitive task analysis conducted in parallel with the 
construction of the problem set. For instance, most students who are engaged in the task will 
initially conduct a rather thorough exploration of the problem space. At the other pole of 
competence, highly effective and efficient students will exhibit refined and parsimonious 
strategic approaches. Between these two poles will be other more transitional, or dead-end states 
that reflect individual progress (or lack thereof) towards improving skills.  

For IMMEX problems we often choose 5 hidden states. Then, similar to the training of the 
ANN’s, many sequences of strategies (ANN nodal classifications) are presented to the HMM 
modeling software (Murphy, 2001) which then constructs probabilistic progress models (Stevens 
et al., 2004, 2005, 2006). This process is shown in Figure 4. 

 
Figure 4. Developing Learning Trajectories from Sequences of Strategies. 

Student #1 began by an extensive exploration of the problem space which was refined on 
subsequent performances. Referring back to Figure 3, the first performance was classified at 
node 12, the second at node 18 and the third at node 24. The data reduction occurring with each 
subsequent performance primarily reflected less reliance in the background resources in the 
Library section of the problem. Student #2 began similarly, but made slower progress in reducing 
the data accessed. Students #3 and 4 rapidly transited to efficient strategies and stabilized there.  

Hidden Markov Modeling provides two important perspectives on problem solving progress. 
First, an emission matrix maps the five states back to the most likely symbols they contain, i.e. 
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the ANN nodes. Second, the processing generates a transition matrix which provides the 
probability of transiting from one state to another. This is shown in Figure 5. 

 
Figure 5. The Emission and Transition Matrices from the Hazmat HMM Model. 
The emission and transition matrices resulting from training a HMM with 1790 sequences of 
students performances show the strategies most likely to represent the different states as well as 
the probability of transiting from one state to another. The overall solution frequency of each state 
is shown inside each ball. 

State 3 represented the most frequent starting point for students and the strategies most often 
associated with it showed extensive testing. Approximately a fifth of the students at this state 
will remain there on the subsequent performance, with a third transiting to either State 2 or State 
4. State 2 is also a transitional state with approximately one third of the students next transiting 
to State 5 which is a stable state characterized by the highest solved rate.  

By plotting the proportion of students at each state for each performance of a problem set, 
trajectories can be developed that visualize progress. This is shown in Figure 6 for students 
working individually as well as in groups. 

 
Figure 6. Modeling Individual and Group Learning Trajectories. This figure 
illustrates the strategic changes as individual students or groups of students gain 
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experience in Hazmat problem solving. Each stacked bar shows the distribution of HMM 
states for the students (N=1790) after a series (1-7) of performances. These states are also 
mapped back to the 6 x 6 matrices which represent 36 different strategy groups identified 
by self organizing ANN. The highlighted boxes in each neural network map indicate 
which strategies are most frequently associated with each State. From the values showing 
high cyclic probabilities along the diagonal of the HMM transition matrix (upper right), 
States 1, 4, and 5 appear stable, suggesting once adopted, they are continually used. In 
contrast, students adopting State 2 and 3 strategies are more likely to adopt other 
strategies (gray boxes) (Stevens et al. 2004).  

One finding that has been observed from middle school through the university is that students 
initially conduct extensive explorations of the problem space, and then begin to refine their 
strategies as they gain experience. Consistent with models of skill acquisition (Ericsson, 2004), 
after relatively few problem performances (generally 5-7), most students stabilize with preferred 
strategies. Students often continue to use these stabilized strategies for prolonged periods of time 
(3-4 months) when serially re-tested (Stevens, 2006).  

Using this modeling approach we have shown that higher ability students stabilize strategies 
more slowly than low ability students, perhaps suggesting a richer repertoire of approaches to 
draw from (Stevens et al., 2004). Although males and females solve the same number and 
proportion of attempted problems, there are significant strategic differences across gender at both 
the ANN and HMM modeling levels (Stevens & Soller, 2005). This apparent disconnect between 
the problem-solving outcomes and the strategies used has also been observed in Bayesian 
Network models of factors influencing IMMEX™ strategies and outcomes (Stevens & Thadani, 
2006).  

One ‘Big Problem’ with Probabilistic Models 
Another component of our assessment framework asks whether the assessment measures are 
easily understood by students, teachers and parents.  While the ANN and HMM provide detailed 
performance and progress information at both the student and classroom level, there is still a 
serious challenge for their widespread adoption by teachers: Each problem set has its own ANN 
topology and HMM state transitions. Therefore, a teacher who implemented six different 
IMMEX problem sets with her classes would have to understand six different performance and 
six different progress models, each composed of 36 nodes and 5 states respectively! This is 
unreasonable to expect from teachers.  

We therefore began to explore alternative ways of representing the problem solving process that 
could draw on ANN and HMM models, and could replicate many of the findings of these 
models, but yet still could be easily understood, and compared across problem sets. The 
approach we have followed is to express problem solving as a value that combines the efficiency 
and effectiveness of the process. We first postulated that the students demonstrating high 
strategic efficiency should make the most effective problem solving decisions using the least 
number of resources available, whereas students with lower efficiency levels would require more 
resources to achieve similar outcomes and / or will fail to reach acceptable outcomes. As 
problem solving skills are refined with experience, this should be reflected as a process of 
resource reduction (Haider et al., 1996).  

The core components of strategic efficiency for resource utilization are therefore 1) the quantity 
of resources used vs. the quantity available, 2) the value of the resulting outcomes expressed as a 
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proportion of the maximum outcomes, and 3) the quality of the data obtained. The first two 
components can be represented by Equation 1 where we define a resource-utilization Efficiency 
Index, termed EI. For IMMEX™ problems the maximum outcome is 2 (e.g. 2 points for the 
correct answer, 1 point for the correct answer on a second attempt, and 0 pts for missing the 
solution). This equation yields a simple exponential curve with a minimum approaching 0 where 
there are no / poor outcomes with extensive resource utilization and a varying maximum 
depending on the value of the absolute quantity of resources available. 

 
Not all of the available resources in a problem space are equally applicable to the particular 
problem at hand, and different combinations of resources will have different values within the 
contexts of different problems. Thus, estimates of the quality of resources used are also required. 
This qualitative dimension is derived from classifications resulting from unsupervised artificial 
neural network (ANN) analysis described above. When the EI for the 36 nodes of the ANN are 
plotted against the average solve rate, the distribution in Figure 8 is obtained. 

 
Figure 7. Distribution of ANN Obtained by Plotting the Average EI vs. the Average 
Solve Rate.  In this figure, we have plotted the EI for each of the neural network nodes 
(numbered according to Figure 3) vs. the solve rate for each node. These values are 
calculated from the data shown in Figure 3 and quadrants are established based on the 
mean solve rate (0.98) and EI (2.15) for the entire dataset. 

Some of the strategies such as those represented by nodes 5, 6 and 12 are neither efficient (low 
IE), nor effective (low solve rate) for solving the problem.  Relating back to Figure 3, these 
strategies are characterized by a detailed examination of the problem space, often without 
solving the problem.  Other strategies, represented by nodes 26 or 19, have high solve rates, with 
limited use of the laboratory tests.   
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By dividing the data set into quadrants using the average EI and the average solve rate, a more 
general metric of problem solving can be obtained which we term a Quadrant Value (QV). 
When new performances are obtained, the QV measure can be constructed through a four step 
process which can be automated to provide real-time measures as new performances are 
generated. 

• Step 1 – develop strategy categories with ANN,
• Step 2 – calculate an efficiency index for each ANN node,
• Step 3 – develop a quantitative quadrant value (QV) grid from average solve rate, and

average EI,
• Step 4 – calculate QV for new student performances.

In applying the steps above for calculating a QV for any particular student performance, suppose 
a student’s performance is classified at node 26 (top right). The effectiveness of this student’s 
performance can be either greater or less than the average value for this node (which is around 
1.5). If the student solved the case on the first try then it would still be classified in Quadrant 4. 
If, however it was missed it would be classified in Quadrant 1. Similarly for a performance at 
Node 25, if the student solved the case on the first attempt with this strategy it would also be 
rated as QV4. For an individual student, the QV metric therefore represents his or her 
proficiency in using resources to solve scientific problems effectively, abstracted across the 
specific problem sets administered to the student. As described shortly, this metric can be carried 
forward across problem sets over the course of the school year, and across the middle school 
grades.   When this procedure is applied to a dataset of student performances of Hazmat, the 
distribution in Figure 8 is obtained. 

Quadrant 1
QIR(1)

High Efficiency
Low Outcomes

Quadrant 2
QIR(2)

Low Efficiency
Low Outcomes

Quadrant 4
QIR(4)

High Efficiency
High Outcomes

Quadrant 3
QIR(3)

Low Efficiency
High Outcomes

Figure 7. Defining Quantitative Values (QV) of Problem Solving. a) Plot of the average EI of 
student performances vs. the solve rates where students performed 4-30 cases of middle school 
IMMEX problems (n~30,000 performances). b) Definition of QV based on the vertex created by 
the average EI and solved rates for the data.  

As shown in Figure 2,  Hazmat contains cases of different difficulty levels. The most difficult 
compounds (e.g., the flame test negative compounds), had the lowest solved rates and EI values; 
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that is, the more difficult the problem, the more data students required to derive a successful 
outcome. As expected, the correlation of EI and the IRT problem difficulty was strong but 
negative (r = -.887, p = .000). 
To determine if QV values could replicate student’s learning progress similar to HMM, we first 
performed chi-square analysis of QV with the HMM States shown in Figure 6. This analysis 
indicated that HMM State 1 mapped closest to QV1, the low efficiency HMM State 3 mapped to 
QV2  and QV3, while the HMM state with the highest solution frequency, State 5, most closely 
mapped to QV4 (Table 1). (χ2 = 7568, df= 12, p = .000). 

Table 1. Crosstabulation comparisons of HMM states and performance quadrant 
distributions. Values in the cells represent the percentages of different states in each quadrant. 

HMM State 
QV 1 2 3 4 5 Total
1 44 9 1 36 10 100
2 23 13 32 25 7 100
3 25 15 27 25 8 100
4 35 11 0 33 21 100

Learning trajectories developed from the QV distributions over multiple Hazmat performances 
(Fig. 9) showed that initially most students were rated as QV2 or QV3, both representing low 
efficiency with variable outcomes, but with experience transited to QV1 or QV4 representing 
higher efficiency. Similar to the stabilization of the HMM states, the quadrant classifications 
stabilized after 4-5 cases. Also similar to the HMM state findings, there were significant 
differences across quadrants for gender (χ2 = 34.33, df= 3, p = .000) or whether students were 
working individually or in collaborative groups (χ2 = 227.45, df= 3, p = .000). These validation 
studies suggest that the single QV measure converges on many aspects of the ANN performance 
and HMM progress models. 
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Figure. 9. QV Models of problem solving progress. The quadrant distributions were 
calculated for ~25,000 Hazmat performances.  Each stacked bar represents the percentages of 
students in the different quadrants after different numbers of case performances.  

 

The Final Wrinkle: IMMEX Problem Sets Differ in Difficulty and the EI 
All IMMEX problem sets are not of equal difficulty when measured broadly across middle 
school. Also, from the nature of the denominator in Equation 1, the maximum EI for different 
problem sets can also vary over a wide range as a greater number of resources available, the 
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higher the potential EI. While QV is beginning to represent a value-related metric, to satisfy our 
challenging question we still need to be able to compare across problem sets. We satisfy this 
need by normalizing the EI and solve rates for each problem set to the average values for the 
dataset of 5000+ performances. When the classroom data from the different problem sets are 
normalized this way, the quadrant structures shown in Figure 10 resulted. 

 
Figure 10. A) Average EI and Solve Rates for Five Middle School Problem Sets. 

The mean EI and solve rates for five different middle school problem sets are plotted for over 
100 different classrooms. The larger symbols indicate the mean EI and solve rates for each of the 
problem sets. B-F) The individual quadrant profiles are shown for each of the problem sets.  

As shown by the similar shapes in the figure, different classrooms of the same teacher often 
clustered together on the quadrant maps. We explored this further with two sets of teachers using 
two different chemistry problem sets, Element Identification (Elements) and Chemical Reactions 
(RXN). To gauge progress, we plot the EI and solve rates after the first through fifth case 
performances. For the problem set Elements there were significant differences in the trajectory 
slopes indicating differential progress, whereas for RXN the classrooms of one teacher started 
lower than those of the other, but both improved similarly.  
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Correlations of EI, IRT and QV with California Achievement Test scores 

We next sought to determine how a student’s problem solving performance over a year 
correlated with another measure of their ability, the California Achievement Test scores. 

A sample of students (N=137 representing ~3500 problem solving performances) performed 
cases from all five problem sets allowing correlations to be made for IRT, EI and QV. For 119 of 
these students the California Achievement Test scores in Reading, Language and Math were also 
available. 
A multiple regression analysis was first conducted to evaluate how well the IRT, EI and QV 
predicted CAT Math scores. The linear combination of the thee measures was significantly 
related to the standardized scores (F(3,118) = 24.5, p = .000). The sample multiple correlation 
was .571 indicating that approximately 32% of the variance in the CAT scores could be 
accounted for by these measures. The QV (r=.173) and IRT (r=.326) scores both contributed 
significantly (p=.000) to the prediction of CAT Math scores while EI was not correlated. 
Table 3. Across problem set performance metric comparisons. The dark cells are significant at 
the .01 level and the lighter cells are significant at the .05 level. 
IRT 

    Elements Density Forensics Math Reactions
CAT 
Reading 

CAT 
Language 

CAT 
Math 

 Elements 1.000        
 Density 0.159 1.000       
 Forensics 0.223 0.148 1.000      
 Math 0.228 0.052 0.156 1.000     
 Reactions 0.171 0.268 0.239 0.180 1.000    
 CAT Reading 0.335 0.100 0.479 0.331 0.308 1.000   
 CAT Language 0.341 0.132 0.398 0.328 0.346 0.751 1.000  
 CAT Math 0.430 0.234 0.389 0.332 0.332 0.675 0.665 1.000 
          
EI 

    Elements Density Forensics Math Reactions
CAT 
Reading 

CAT 
Language 

CAT 
Math 

 Elements 1.000        
 Density 0.240 1.000       
 Forensics 0.173 0.176 1.000      
 Math 0.169 0.122 0.241 1.000     
 Reactions 0.066 0.128 0.052 0.417 1.000    
 CAT Reading 0.137 0.159 -0.073 -0.010 0.127 1.000   
 CAT Language 0.085 0.202 -0.141 0.004 0.090 0.751 1.000  
 CAT Math 0.279 0.265 -0.047 0.069 0.136 0.675 0.665 1.000 
          
QV 

    Elements Density Forensics Math Reactions
CAT 
Reading 

CAT 
Language 

CAT 
Math 

 Elements 1.000        
 Density 0.157 1.000       
 Forensics 0.002 0.170 1.000      
 Math 0.063 0.081 -0.075 1.000     
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 Reactions 0.168 0.042 0.294 0.146 1.000    
 CAT Reading 0.293 0.109 0.447 0.079 0.195 1.000   
 CAT Language 0.279 0.275 0.296 0.138 0.227 0.751 1.000  
 CAT Math 0.266 0.327 0.301 0.061 0.190 0.675 0.665 1.000 
 

Correlations were then performed for each metric across the five problem sets (Table 3). The 
strongest and most frequent correlations were outcome-based across the IRT scale and these 
ratings also correlated with scores on the three CAT tests. The EI correlations across problem 
sets were more variable suggesting that students were not necessarily using the same general 
strategic approaches across the different problem sets. The EI measures were also less well 
correlated with the standardized test scores. The QV for each problem set which (loosely) 
combines EI and IRT into a single measure was correlated with the standardized test scores, and 
was variably correlated across problem sets. 
 

We examined these findings further by hypothesizing that if teachers were preparing their 
students well for problem solving a correlation should exist between problem solving metrics 
and the California Achievement Test (CAT) scores. For these studies the student population 
consisted of middle school students (N=775) from multiple classes of six teachers where the 
CAT mathematics scores (M-SS) were also available. The students performed 4-6 different 
IMMEX problem sets (between 25-60 different cases total) over a year's time. The QV measure 
was regressed for all performances against the M-SS test scores. A correlation between QV and 
the M-SS scores was seen for some teachers, but not for the others (Figure 11). This was not due 
to differences in the overall achievement levels of the students in the different classes; in fact, the 
two highest achieving classes (by the M-SS scores) were the most poorly correlated. In the lower 
performing classes, most students are at QV = 2.  These are students who are looking extensively 
at the data but repeatedly failing to solve the problems during the school year, suggesting that 
their teachers are not preparing them to carefully select and synthesize data (Stevens & Thadani, 
submitted).  
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Figure 11. Student Quadrant Values from six different middle school teachers. The students 
(n=775) from the classes of six teachers performed between 25 and 60 IMMEX problem cases 
during a year. The average QV is plotted vs. the student’s Math CAT scores.  

 

Discussion 
The goal of this study was to develop and begin to validate a value-derived measure of scientific 
problem solving that could be applied to, and compared across multiple problem solving 
situations.  The study was motivated by the accumulating data on classroom problem solving that 
is being provided by the expanding library of IMMEX simulations.  These performances are now 
being collected from hundreds of students in a longitudinal manner across different domains, and 
over semesters or years.   
 
The relatively simple EI and QV constructs --when paired with individual student outcomes and 
examined across domains and school organizations--appear to have potential as rapid and 
meaningful indicators of problem solving on close-ended tasks. They are derived from real-
world constructs, are easily reportable across educational systems, and can be normalized across 
tasks and domains.  This generality is unusual as the performance data from most problem 
solving tasks is highly specific and difficult to aggregate across tasks or domains. Despite this 
generality, the measures replicate the student learning dynamics and effects of contextual 
influences of prior nominal modeling approaches. 

The resource utilization modeling is also extensible and by including other constraints such as 
time, risk, or cost, the plot of EI vs. solved rate could be expanded into other dimensions by 
substituting the denominator of Equation 1 with the time used / time available, or the costs / 
funds available calculations, etc.  As all problem solving, as opposed to problem posing, involves 
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constraints the analysis could be applied to situations other than hypothetical-deductive problem 
solving.   

Such an analysis and reporting of problem solving efficiency could support learning at several 
levels. If diagrams similar to Figure 7 were available to students in real-time (Stevens & Soller, 
2005), with their performances highlighted, they could provide useful formative feedback 
through comparisons with other students in the class (or school, depending on the display 
aggregation). The quadrant designations could also help direct the targeting of specific 
suggestions to students before a subsequent case is attempted to enhance motivation (Conati & 
Zhao, 2004) or provide pedagogical support (Arroyo et al, 2004). 

For teachers, the EI and QV measures can be used to track class progress and help them self-
monitor their teaching. Also, the sensitivity of the quadrant distributions to different task 
representations by teachers suggests applications for targeting training in ways that address 
trends in class-level problem solving.  Used in these ways, the EI and QV measures may help re-
think the ways scientific problem solving is systemically assessed in the classroom, and how the 
impact of teaching these skills becomes quantified.   
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