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INTRODUCTION 

One of the challenges for studying team cognition in 

real-time is the development of unobtrusive and 

relevant measures of team performance that can be 

practically implemented and rapidly modeled in real-

world environments (Salas et al, 2008). 

We have been studying whether the simultaneous 

expression of EEG-derived cognitive measures by 

different members of a team could be used to 

complement verbal communication streams for 

constructing such teamwork models.  In this approach 

the values of a cognitive measure at any point in time 

are aggregated across the team members into a vector 

that is then clustered / classified by artificial neural 

network (ANN) technologies (Stevens et al, 2009; 

Stevens et al, 2010a).   The result is a series of symbolic 

patterns termed Neurophysiologic Synchronies (NS) 

defined as the second-by-second quantitative co-

expression of the same neurophysiologic measure by 

different members of the team.  The cognitive measures 

we have modeled include High Engagement and High 

Workload which have been derived from EEG data 

streams (Berka et al, 2005).  If NS are meaningful 

constructs then their expression should:  

1. Be able to be collected and analyzed in real-

world situations;

2. Be sensitive to long and short-term task

changes;

3. Relate to some established aspects of team

cognition, yet reveal something new;

4. Be extensible to future teams;

5. Distinguish novice / expert performance; and,

6. Be sensitive to the effects of training.

Our initial studies used a single-trial approach for 

developing NS models, i.e. the data from a single 

performance was used for deriving the ANN and HMM 

models for that performance.  These studies were 

informative and generated validation data for criteria 1-

3 described above.  As new models were created for 

each task and team it was difficult to compare across 

teams or levels of experience as the ANN designations 

changed due to the probabilistic assignment of vectors 

to specifically numbered nodes and states.  Also, 

without standardized models it was difficult to begin to 

extend this analysis to real-time team modeling.   

One way of developing standardized models would be 

to combine the performances from multiple teams with 

differing experience creating standardized (or generic) 

models.  It is not intuitive whether this approach would 

be successful.  Standardized datasets due to their larger 

size may not be sensitive to some combinations of NS 

across members of some teams due to their unique 

expression by that team.  Conversely, separate single-

trial models may not have the repertoire of EEG-E 

combinations to allow meaningful comparisons across 

teams. There is also a validation challenge when 

developing standardized models:  what will be the 

comparison standard?  Neurophysiologic synchrony 

research is in its early stages and a precise niche where 

they fit into the theories of teamwork is not yet clear. 

While they are linked with some aspects of speech such 

as structure, they are not closely enough linked to use 

speech for model validation. 

In this study we have generated standardized models for 

both three and six-person teams as well as for EEG-

derived measures of engagement (EEG-E) and 

workload (EEG-WL).  To make direct comparisons 

across models we have measured the temporal 

dynamics of the entropy or „amount of mix‟ in these 

symbolic data streams.  This has allowed us to directly 

make quantitative comparisons between teams with 

different levels of experience.  

TASKS AND METHODS 

Tasks 

Submarine Piloting and Navigation (SPAN) simulations 

are high fidelity tasks that contain dynamically 

programmed situation events crafted to serve as the 

foundation of adaptive team training. Such events in the 

SPAN include encounters with approaching ship traffic, 

the need to avoid nearby shoals, changing weather 

conditions, and instrument failure. There are task-

oriented cues to guide the mission, team-member cues 

that provide information on how other members of the 
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team are performing / communicating, and adaptive 

behaviors that help the team adjust in cases where one 

or more members are under stress or are not familiar 

with aspects of the unfolding situation. 

Each SPAN session begins with a briefing detailing the 

navigation mission. This is followed by the simulation 

which can last from 60 – 120 minutes. This is followed 

by a debriefing session that helps teams monitor and 

regulate their own performance based on the 

dimensions of teamwork. This teamwork task requires 

not only the monitoring of the unfolding situation and 

the monitoring of one‟s work with regard to that 

situation, but also the monitoring of the work of others. 

Twenty-one SPAN sessions were conducted where 

EEG was collected from three to six persons.  The data 

reported here was derived from twelve of those sessions 

selected as:  1) persons in the same six crew positions 

were being monitored by EEG, 2) the same individuals 

repeated in the same positions across 2-5 training 

sessions over multiple days. The six members of the 

teams that were fitted with the EEG headsets were the 

Quartermaster on Watch (QMOW), Navigator (NAV), 

Officer on Deck (OOD), Assistant Navigator (ANAV), 

Contact Coordinator (CC), and Radar (RAD). 

Methods 

EEG 

The ABM, B-Alert® system contains an easily-applied 

wireless EEG system that includes intelligent software 

designed to identify and eliminate multiple sources of 

biological and environmental contamination and allow 

real-time classification of cognitive state changes even 

in challenging environments. The 9-channel wireless 

headset includes sensor site locations: F3, F4, C3, C4, 

P3, P4, Fz, Cz, POz in a monopolar configuration 

referenced to linked mastoids. ABM B-Alert® software 

acquires the data and quantifies alertness, engagement 

and mental workload in real-time using linear and 

quadratic discriminant function analyses with model-

selected PSD variables in each of the 1-hz bins from 1 - 

40 Hz, ratios of power bins, event-related power 

(PERP) and/or wavelet transform calculations.  

The data processing begins with the eye-blink 

decontaminated EEG files containing second-by-second 

calculations of the probabilities of High EEG-

Engagement (EEG-E) (Levendowski et al, 2001, Berka 

et al, 2004).  The neuropsychological tasks used to 

build the algorithm, and subsequently used to 

individualize the algorithm‟s centroids were presented 

using proprietary acquisition software. The algorithm 

was trained using EEG data collected during the Osler 

maintenance of wakefulness task (OSLER) (Krieger et 

al., 2004), eyes closed passive vigilance (EC), eyes 

open passive vigilance (EO), and 3-choice active 

vigilance (3CVT) tasks to define the classes of sleep 

onset (SO), distraction/relaxed wakefulness (DIS), low 

engagement (LE), and high engagement (HE).  

Simple baseline tasks were used to fit the EEG 

classification algorithms to the individual so that the 

cognitive state models can then be applied to 

increasingly complex task environments, providing a 

highly sensitive and specific technique for identifying 

an individual‟s neural signatures of cognition in both 

real-time and offline analysis. These methods have 

proven valid in EEG quantification of drowsiness-

alertness during driving simulation, simple and 

complex cognitive tasks and in military, industrial and 

educational simulation environments.  (Levendowski et 

al, 2002, Stevens et al, 2007, Berka et al, 2005).   

Neurophysiologic Synchronies 

The neurophysiologic synchronies (NS) that we are 

studying can be thought of as the second-by-second 

quantitative co-expression of the same 

neurophysiologic / cognitive measures by members of 

the team.  We have developed a four-step modeling 

approach with the outputs of each step providing a 

different perspective of team neurodynamics.  The four 

steps outlined in Figure 1 are:  A) Data Normalization; 

B) Unsupervised Artificial Neural Network (ANN)

Clustering; C) Hidden Markov Temporal Modeling

(HMM), and; D) NS Data Stream Entropy.

For the generation of generic ANN and HMM models 

EEG-E data was pooled from 8 SPAN sessions (31,450 

team training vectors  or ~ 8 hours of teamwork) which 

were used as the training set.  The position of each of 

the team members in the training vector was the same 

as described above.  The team highlighted in Figures 3-

5 was not part of the training set. 

The first step (A), data normalization, equated the 

absolute levels of EEG-E or EEG-WL of each team 

member with his/her own average levels over the period 

of the task. This identified whether a team member was 

experiencing above or below average levels of EEG-E 

or EEG-WL; and, whether the team as a whole was 

experiencing above or below average levels. 

As described previously (Stevens et al, 2010a) in this 

normalization process the EEG-E levels were 

partitioned into the upper 33%, the lower 33% and the 

middle 33%; these were assigned values of 3, -1, and 1 

respectively, values chosen to enhance visualizations.  

The next step (B) combined these values at each epoch 

for each team member into a vector representing the 

state of EEG-E for the team as a whole; these vectors 
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were used to train ANN to classify the state of the team 

at any point in time (Stevens al, 2010a).   

Figure 1.  Layered Analytic Model for Detecting and 

Describing Neurophysiologic Synchronies.   

In this process the second-by-second normalized values 

of team EEG-E for the entire episode were repeatedly 

(50-2000 times) presented to a 1 x 25 node 

unsupervised ANN. The result was a series of 25 

patterns that we call neurophysiologic synchrony 

patterns that show the relative levels of EEG-E for each 

team member on a second-by-second basis (Figure 2). 

In Step C the sequences of NS Patterns were viewed as 

output symbols from hidden states of a team and HMM 

were developed to characterize these states.  The NS 

data stream for the combined team data was segmented 

into sequences of 120 seconds and HMMs were trained 

with these sequences assuming 5 hidden states as 

previously performed when modeling problem solving 

learning trajectories (Soller & Stevens, 2007).  Training 

was for 500 epochs and resulted in a convergence of 

0.0001.  Next, the most likely state sequence through 

the performance was generated by the Viterbi 

algorithm.  The outputs of the modeling of NS Pattern 

streams by HMM are termed NS States.   

While ANN Pattern and HMM State changes help 

identify transition points and preferred patterns, a 

quantitative measure of the teams‟ dynamics would be 

useful for comparing across teams or with other 

teamwork metrics (Step D).  As the NS Patterns are 

symbolic, one approach is to calculate the Shannon 

entropy of the NS data stream (Shannon, 1951).   

Figure 2. Team NS_E Profiles after ANN Training.  The 

center histograms show the 25 NS Patterns obtained after 

ANN training.  The order of team members associated 

with each histogram bar is shown below.  The 

surrounding matrices map the NS_E Patterns to the NS_E 

States from HMM modeling. 

The idea of entropy is derived from information science 

and is a measure of the level of uncertainty or “amount 

of mix” in a symbol stream.  Calculated entropy is 

expressed in terms of bits and the maximum entropy 

that we could expect from the 25 NS Patterns if they 

were randomly distributed would be log2 (25) or 4.64. 

For comparison, an entropy value of 3.6 would result in 

only 12 of the NS Patterns randomly expressed.  To 

develop an entropy profile over a SPAN session the NS 

Shannon entropy was calculated at each epoch using a 

sliding window of the values from the prior 100 

seconds.  The idea was that as teams entered and left 

periods of organization the entropy would fluctuate as 

fewer or more of the 25 NS_E patterns were expressed. 

This relationship is shown in Figure 3. 

Figure 3.  NS_E Entropy Profile for a SPAN Team.  This 

figure shows the Shannon entropy for NS_E at each epoch 

over a sliding window of the prior 100 seconds.  Above the 

entropy profile are the transition matrices for the two 

highlighted 120 second periods.  These transition matrices 

show the NS_E Patterns at times t and t+1. 
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RESULTS 

Figure 4 compares the NS_E States following single-

trial and generic modeling of the same SPAN 

performance.  Both models showed the NS_E State 

transitions at the Scenario / Debrief junction (epoch 

3390) and at epoch 4400 of the Debrief.  They also both 

showed a long period at the beginning of the scenario 

(epochs 590 – 1000) where a single state predominated 

and a period (3100 – 3385) at the end of the scenario 

where the same state predominated. These task-junction 

transitions have been observed in ten different SPAN 

sessions where single-trial and generic modeling was 

conducted in parallel.  

Figure 4.  Comparison of NS_E State Expressions when 

Modeled with Single Trial (top) or Generic (bottom) ANN 

and HMM Models.  The dark portion in the middle is the 

Scenario segment and the lighter portions to the left and 

right are the Brief and Debrief segments. 

Another validation approach compared the Shannon 

entropy of the NS Pattern data streams from each 

model.  This metric is derived from information science 

and measures the degree of uncertainty in a data stream 

(Shannon, 1951).  The top of Figure 5 is a scatter plot 

of Shannon entropy for the NS_E values from single-

trial and generic NS_E models which were highly 

correlated (R = 0.86, R
2
 = 0.74). The line graph below 

shows the co-fluctuations of the two entropy streams 

where there was a close concordance. The overall 

NS_E entropies of the single-trial and generic were also 

similar (Mean ± SD = 4.073 ± 0.23 and 4.071 ±  0.22). 

Combined, these data indicate that the generic NS_E 

models provided a close approximation of those 

obtained with single-trial modeling. 

NS_E Expression across Teams and SPAN Sessions 

One question that could be approached with the 

heterologous NS_E models is: How, consistently 

different NS_E States were used across teams and / or 

training sessions.  Figure 6 shows the frequency 

distribution of NS_E for an expert (E2) and two Junior 

Officer teams (T4 and T5). Each performed two 

simulations; except an additional Junior Officer team 

performed a single session (T1).  The NS_E frequencies 

were separated into the Scenario, Debrief and Briefing 

segments of the simulation based on prior studies (such 

as Figure 2) that have shown there are often dynamic 

NS_E shifts at these segment junctions. 

Figure 5.  Comparison of the Shannon Entropy of NS_E 

Pattern Expression from Single Trial or Generic Models. 

The top figure shows a scatterplot of the entropy from the 

two data streams; below is a line chart comparing the 

second-by-second fluctuations.     

For most teams the dominant NS_E States during the 

Scenario segment were 1 and 2.  Referring to Figure 2, 

these states represent where most of the team was 

highly engaged.  These appeared to represent the 

normal operating mode for SPAN teams as their 

expression was diminished during the Debriefing 

segment and to a lesser extent in the Briefing segment.   

Figure 6.  Team NS_E State Distributions Across Teams 

and Sessions. 

While there were slight differences in the NS_E State 

frequencies for E2, T4 and T5 the performance of team 
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T1 was different with NS_E State 4 dominating. 

Referring to Figure 2, this state was one where many of 

the team members‟ had low EEG-E. The differences 

across teams were larger when comparing across the 

Debrief and Brief segments. Here there was 

proportionally higher expression of NS_E States 3 & 4 

(teams with low EEG-E) for the expert team and NS_E 

State 5 for the Junior Officer teams.  

While the above comparisons showed some differences 

across sessions and teams the lack of resolution made it 

difficult to make quantitative assessments across teams 

or comparisons between teams with different levels of 

experience, like SOAC vs. experienced submarine 

(SUB) teams. In other studies an examination of the 

predominant NS_E Patterns showed that they were 

different for SOAC and SUB teams (Stevens & 

Gorman, 2011) and that SUB teams used more of the 

available NS Patterns than did SOAC teams.  This 

suggested that direct comparisons of the NS_E entropy 

streams may be a useful indicator of the experience / 

proficiency of teams.   

Figure 7.  NS_E Entropy Levels for SOAC and SUB 

Teams. 

The NS_E Patterns from 14 SOAC and 5 SUB team 

sessions were generated by testing the EEG-E data 

streams on the generic networks.  Next, the NS_E 

entropies were calculated as described in the Methods. 

SUB teams had the highest levels of NS_E entropy 

while the lowest entropies were from the first two 

sessions by SOAC teams.  The histograms in the top 

figure show the progressive increase in NS_E entropy 

as two of the teams gained experience.   

The final series of studies sought to determine how well 

generic networks would perform in other teamwork 

situations.  Neurophysiologic synchronies have been 

used to study other forms of teamwork including 

scientific problem solving by teams of three high school 

students (Stevens et al, 2009) as well as NAVAIR Anti-

Submarine Warfare Teams (ASWT), which were also 

three member teams. 

Figure 8.  Comparison of Single Trial and Generic ANN 

NS Entropies. Comparisons of NS_E entropies are made 

for an ASWT team (top), and a high school scientific 

problem solving team (middle).  The lower figure shows 

the NS_WL entropy comparisons for a SOAC SPAN 

team. 
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Three-person NS_E generic ANN and HMM models 

were prepared from 62,021 epochs of EEG-E data; the 

data was from six teams of high school students that 

performed substance abuse science simulations, 

emotion recall experiments, three-member SPAN teams 

and brainstorming sessions (Stevens et al, 2010b). 

First, EEG-E vectors were prepared from an 

experienced ASWT and were classified by either these 

generic models, or single-trial models.  Similar to the 

SPAN results shown in Figure 5, the overall NS_E 

entropies and variances were similar, the correlation 

between the two data streams was high, and when the 

two data streams were co-plotted they showed similar 

temporal dynamics (Figure 8). The high school problem 

solving team also showed similar dynamics for NS_E 

when tested on the generic and single-trial models 

although the overall NS_E entropy level was lower 

when tested on the generic models.  A third generic 

model was created from the EEG-WL vectors of 

multiple SPAN teams and the dynamics of the 

neurophysiologic synchronies for EEG-WL (NS_WL) 

were compared with those generated from homologous 

EEG-WL models from the T4S3 SPAN team.  The 

overall correlation coefficient was the highest of the 

comparisons made in this study.  The entropy dynamics 

of the two data streams co-fluctuated, very closely.  

DISCUSSION 

Prior to developing and validating the generic NS 

models only the first three usefulness criteria outlined 

in the introduction could be approached:  We had used 

NS expression to study teamwork in multiple settings 

with different size teams (Stevens et al, 2010b); we had 

demonstrated changing dynamics of their expression 

over long and short time periods (Stevens et al, 2010a); 

and, we had shown that these dynamics related to some 

aspects of speech (Stevens et al, 2009).  As shown in 

this study, with the standardized models we can now 

begin to compare NS expression across teams, training 

sessions and levels of expertise.   

Validation of the generic models was approached two 

ways; one using NS Patterns from ANN clustering of 

EEG-Engagement levels and one using NS States 

which provides a temporal component to the NS 

Patterns (Stevens et al, 2010b).  One of the most 

reproducible features of SPAN performances is the 

change in NS_E States at the junction between the 

Scenario and Debriefing.  The generic and single-trial 

models reproducibly detected these temporal features at 

this junction indicating an equivalent sensitivity of 

large task changes.  A different form of validation drew 

on the concept of entropy from information theory 

which measures the degree of uncertainty in a data 

stream of symbols.  These entropy profiles highlighted 

periods of high and low entropy modeled by both 

approaches.  From the NS_E Pattern transition 

matrices, the periods of low entropy were those where 

the team was more cognitively organized.  The 

significance of these re-organizations is not clear, but 

may relate to periods of unusual tension or stress for a 

team (Stevens et al, submitted).  However, the strong 

concordance in the entropy profiles between the single-

trial and generic models provided an additional 

validation of the sensitivity and specificity of the 

generic NS_E models.   

One of the most interesting and potentially useful 

findings from the generic models is the differences in 

NS_E entropy between SOAC teams beginning their 

training, and experienced SUB teams.  These findings 

may provide an objective, quantitative measure of team 

proficiency which can be tracked over training or across 

different training protocols.   

The fluctuations in entropy we have observed during 

the model validations may also provide a rapid readout 

for how teams respond to different events during a 

simulation task.  To further such studies, we are 

incorporating these models into software systems that 

will supply rapid (minutes) after training feedback to 

teams and provide a framework for future real-time 

adaptive monitoring and training. 
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