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Abstract  

We have conducted studies with wireless headsets to explore the relationship of working cognitive load (EEG-WL), 
distraction (EEG-DT) and engagement (EEG-E) and problem solving efficiency and effectiveness on a series of 
qualitative chemistry, biology and mathematics simulations. As students gained experience by working multiple 
cases, the EEG-E levels decreased with the reduced novelty of the problem space, the WL levels remained similar 
and the DT levels were variable. This EEG-DT variability was associated with the relative difficulty of the problem, 
by the misinterpretation of data, and / or by uncertainty associated with the solution of the problem.  

To refine the analysis, real-time estimates of EEG-WL, EEG-DT and EEG-E obtained at one second intervals were 
interleaved with timeline representations of the problem solving process to associate the dynamics of cognitive 
function with the dynamics of problem solving and learning. Elevated EEG-E frequently occurred shortly after the 
selection of test data, especially during the first problem performance, and also when the students were taking notes. 
EEG-WL values fluctuated over the case performance but with no obvious relationship to EEG-DT or EEG-E. EEG-
DT was closely linked with missing the case solution and was often reciprocal to the EEG-E. These results indicate 
that real time monitoring of EEG can begin to contribute a dynamic dimension to classroom problem solving and 
could help design approaches for real-time feedback to improve learning.  

1 INTRODUCTION 

Skill development has been described as occurring in stages that are characterized by distinctive amounts of time 
and mental effort required to exercise the skill (Anderson, 1982, 1995, Schneider and Shiffrin, 1977).  Three stages 
have been identified: the initial cognitive stage requiring the assembling of new knowledge, the associative stage 
where newly assembled procedural steps gradually automate as they are practiced, and the autonomous stage where 
the task execution is automated and performed with minimal conscious mental effort.  During the transition from the 
cognitive to associative stage, both speed and accuracy increase as subjects become less reliant on the declarative 
representations of knowledge (Anderson, 1982, 1995).   

Given the complexities of skill acquisition it is not surprising that a variety of approaches have been used to develop 
models of the process.  For instance, some researchers have explored the improved powers of computation in 
combination with machine learning tools to provide refined models of student skill acquisition and learning 
behaviours in science and mathematics.  The scope and depth of the learning activities probed by these technology-
driven tools are becoming increasingly detailed (Arroyo, Woolf & Beal, 2006; Beal, 2004). Such systems rely on 
learner models that include continually updated estimates of students’ knowledge and misconceptions, based on 
actions such as choosing an incorrect answer or requesting a multimedia hint. Although such learner models are 
capable of forecasting student difficulties (Stevens, Johnson, & Soller, 2005), they still rely on relatively 
impoverished input.  

Because the key distinction between the second and third stages of skill acquisition is a decrease in mental effort 
rather than a reliable difference in the accuracy of performance, application of neurophysiologic approaches, 
including the quantification of EEG correlates of workload, attention and task engagement have also been used to 
provide objective evidence of the progression from stage 2 to stage 3 (Berka, 2004, Berka 2006).  If performance 
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alone is used, no differentiation is made between people who perform well but require high mental effort and people 
who perform well with low mental effort.   

Although there is a large and growing literature on the EEG correlates of attention, memory, and perception 
(Fabiani, 2001) there is a relative dearth of EEG investigations of the process skill acquisition and learning 
(Smith,1999).  EEG researchers have generally elected to employ study protocols that utilize training-to-criterion to 
minimize variability across subjects and ensure that stable EEG parameters could be characterized.  In most studies, 
the EEG data is not even acquired during the training process leaving a potentially rich data source untapped.  

However, while advanced EEG monitoring devices are becoming more common in high workload / high stress 
professions (such as tactical command, air traffic control) the ideas have not been comprehensively applied to real-
world educational settings due in part to some obvious challenges.  First, the acquisition of problem solving skills is 
a gradual process and not all novices solve problems in the same way, nor do they follow the same path at the same 
pace as they develop an understanding of the domain.  Next, given the diversity of the student population it is 
difficult to assess what their relative levels of competence are when performing a task making it difficult to 
accurately relate EEG measures to other measures of task skill.  This is further complicated as strategic variability 
makes analyzing the patterns of students’ problem solving record too complicated to be performed routinely. 

Nevertheless, there are aspects of science education that could benefit from deriving data from advanced monitoring 
devices and combining it with real-time computational models of the tasks and associated outcomes.  For instance, 
they could help identify where learning gains are being impeded by the task complexity or the need for the 
integration of diverse skills.   Also, probabilistic models of student performance, and predictive extrapolations from 
these models to future performance are just that, probabilistic, lacking in the specifics of the individual.  We believe 
that by combining such probabilistic models with the highly individualized cognitive measures afforded by EEG, the 
predictive accuracy of both models can be greatly improved and suggest approaches for augmenting cognition in 
educational settings.  This paper describes our initial steps towards this goal. 

2 METHODS 

2.1 The IMMEX™ Problem Solving Environment 

The software system used for these studies is termed IMMEX™ whose program structure is based on an extensive 
literature of how students select and use strategies during scientific problem solving (VanLehn, 1996, Schuun & 
Reder, 2001, Schuun et al., 2001, Haider & Frensch, 1996). 

To illustrate the system, a sample biology task called Phyto Phiasco provides evidence of a student's ability to 
identify why the local potato plants are dying. The problem begins with a multimedia presentation explaining the 
scenario and the student's challenge is to identify the cause. The problem space contains 38 menu items describing 
local weather conditions, soil nutrients, plant appearance, disease symptoms, etc. When the student selects a menu 
item, he or she verifies the test requested and is then shown a presentation of the test results. When students feel they 
have gathered the information needed to identify the cause they attempt to solve the problem.  

 

 
Figure 1. Sample IMMEX™ simulation.  In the Phyto Phiasco simulation, the farmer’s potato plants are dying and 
the challenge for the student is to identify the cause by examining local weather conditions, nutrients, etc. 



  

The IMMEX™ database serializes timestamps of how students use these resources. Then in real time models are 
formed based on 1) estimates of student ability, 2) the strategies used, and 3) estimates of future performance.  
These are performed by Item Response Theory (IRT) analysis, Artificial Neural Network (ANN) analysis and 
Hidden Markov Modeling (HMM) respectively (Stevens et al., 2004, 2005, 2006).  

For IRT analysis the problem difficulty of the different cases is first estimated using the solve rates from a large 
number of student performances. Then, using this model, the ability of each student is estimated using not only 
whether or not the case was solved, but also the relative difficulty of the case.  

As students solve IMMEX™ cases, the menu items selected are then used to train competitive, self-organizing ANN  
(Stevens & Najafi, 1993, Stevens et al, 1996). Self-organizing maps learn to cluster similar performances in such a 
way that neurons near each other in the neuron layer respond to similar input vectors (Kohonen, 2001). The result is 
a topological arrangement of performance clusters where geometric distance between these clusters becomes a 
metaphor for strategic similarity. We frequently use a 36-node neural network and train with between 2000-5000 
performances derived from students with different ability levels and where each student performed at least 3-4 cases 
of the problem set (Stevens & Casillas, 2006). The components of each strategy in this classification can then be 
visualized for each of the 36 nodes by histograms showing the frequency of items selected (Figure 2).  

Most strategies defined in this way consist of items that are always selected for performances at that node (i.e. those 
with a frequency of 1) as well as items that are ordered more variably. For instance, many Node 15 performances 
shown in Figure 2 A contain the items 28-31 whereas few contain items 8-12. Figure 2 B is a composite ANN nodal 
map, which illustrates the topology generated during the self-organizing training process. Each of the 36 graphs in 
the matrix represents one node in the ANN, where each individual node summarizes groups of similar student’s 
problem solving performances automatically clustered together by the ANN procedure. 

 
Figure. 2. Sample neural network nodal analysis for identifying strategies. a.) The selection frequency of each action 
(identified by the labels) is plotted for the performances at node 15, thus characterizing the performances for this 
node and relating them to performances at neighboring nodes. The nodes are numbered in rows, 1-6, 7-12, etc. b.) 
This figure shows the item selection frequencies for all 36 nodes (Stevens et al., 2004, 2005, 2006). 

IMMEX™ problem sets consist of 5-60 parallel cases, so that if students perform multiple cases of a problem set, 
learning trajectories can be developed through Hidden Markov Modeling (HMM) that not only reflect and model 
students’ strategy shifts as they attempt series of cases, but also predict future problem solving performance. In our 
context, a number of hidden states are postulated to exist that represent the strategic transitions that students may 
pass through as they perform multiple IMMEX™ cases. Each hidden state is represented by a probabilistic machine 
learning function, realizing the idea that student problem solving activities contain an element of uncertainty. For 
most problem sets, the postulated number of states is 3-5 based on the observed strategic complexity. Then, similar 
to ANN analysis, exemplars of strategy sequences, as identified by ANN are repeatedly presented to the HMM 
software to develop progress models. As shown in Figure 3, the emission matrix resulting from the HMM procedure 
allows a mapping to the different strategies encompassed by each state.   

The dynamics of the state changes for Phyto Phiasco learning trajectory are shown in Figure 3. Initially many 
students began by selecting many test items as represented by State 2 and consistent with models of skill acquisition 
(Ericsson, 2004), with time they refined their strategies and selected fewer tests as shown by States 3 and 4. As 
expected, with practice student's solve rates increased from 35% to 63% (χ2 = 121.8, df=10, p<0.000). The rate of 
stabilization, and the strategies stabilized are influenced by gender (Stevens & Soller, 2005), experience (Stevens et 
al, 2004), and individual or group collaboration (Cooper et al, submitted), etc. Students often continue to use these 
stabilized strategies for prolonged periods of time (3-4 months) when serially re-tested (Stevens, 2006).  



  

IMMEX™ problem solving therefore represents a task where it is possible to construct probabilistic models of many 
different aspects of problem solving skill acquisition across problem solving domains. The constraints of working 
memory are likely to be particularly relevant during such skill acquisition where working memory capacity can 
frequently be exceeded. The possibility of combining these models with EEG workload metrics raises questions 
regarding student learning: e.g., what are the relative cognitive demands and the balances of different working 
memory capacities as students gain experience and begin to stabilize their strategies? 

 

 
Figure 3. Modeling individual learning trajectories. This figure shows the strategic changes as students working 
alone gain experience in Phyto Phiasco problem solving. Each stacked bar shows the distribution of HMM states for 
the students (N=3325) after a series (1-6) of performances. These states are also mapped back to the 6 x 6 matrices 
which represent 36 different strategy groups identified by self organizing ANN. The highlighted boxes in each 
neural network map indicate which strategies are most frequently associated with each State (Stevens et al. 2004). 

2.2 The B-Alert®system 

Recording and analysis of EEG has traditionally been confined to laboratory settings due to the technical obstacles 
of recording high quality data and the computational demands of real-time analysis. Advances in electronics and 
data processing set the stage for ambulatory EEG applications. A recently developed wireless EEG sensor headset 
facilitates easy acquisition of high quality EEG combining battery-powered hardware with a sensor placement 
system to provide a lightweight, easy-to-apply method to acquire and analyze six channels of high-quality EEG. 

The EEG sensor headset requires no scalp preparation and provides a comfortable and secure sensor-scalp interface 
for 12 to 24 hours of continuous use. The headset was designed with fixed sensor locations for three sizes (e.g., 
small, medium and large). Standardized sensor placements include locations over frontal, central, parietal and 
occipital regions (sensor sites: F3-F4, C3-C4, Cz-PO, F3-Cz, Fz-C3, Fz-PO). Amplification, digitization, and radio 
frequency (RF) transmission of the signals are accomplished with miniaturized electronics in a portable unit worn on 
the head. The combination of amplification and digitization of the EEG close to the sensors and wireless 
transmission of the data facilitates the acquisition of high quality signals even in high electromagnetic interference 
environments. Data are sampled at 256 samples/second with a bandpass from 0.5 Hz and 65Hz (at 3dB attenuation) 
obtained digitally with Sigma-Delta A/D converters.  

Quantification of the EEG in real-time, referred to as the B-Alert® system, is achieved using signal analysis 
techniques to identify and decontaminate fast and slow eye blinks, and identify and reject data points contaminated 
with excessive muscle activity, amplifier saturation, and/or excursions due to movement artifacts. Decontaminated 
EEG is then segmented into overlapping 256 data-point windows called overlays. An epoch consists of three 
consecutive overlays. Fast-Fourier transform is applied to each overlay of the decontaminated EEG signal multiplied 
by the Kaiser window (α = 6.0) to compute the power spectral densities (PSD). The PSD values are adjusted to take 
into account zero values inserted for artifact contaminated data points. 

Wavelet analyses are applied to detect excessive muscle activity (EMG) and to identify and decontaminate eye 
blinks. Once the artifacts are identified in the time-domain data, the EEG signal is decomposed using a wavelets 
transformation. The wavelets eye blink identification routine uses a two-step discriminant function analysis (DFA). 



  

The DFA classifies each data point as a control, eye blink or theta activity. Multiple data points that are classified as 
eye blinks are then linked and the eye blink detection region is established. Decontamination of eye blinks is 
accomplished by computing mean wavelet coefficients for the 0-2, 2-4 and 4-8 Hz bins from nearby non-
contaminated regions and replacing the contaminated data points. The EEG signal is then reconstructed from the 
wavelets bins ranging from 0.5 to 64 Hz. Zero values are inserted into the reconstructed EEG signal at zero crossing 
before and after spikes, excursions and saturations. EEG absolute and relative power spectral density (PSD) 
variables for each 1-second epoch using a 50% overlapping window are then computed. 

2.3 Subjects and Study 

Subjects (n=7) first performed a single 30-minute baseline EEG test session to adjust the software to accommodate 
individual differences in the EEG (Berka, 2004). They then performed multiple IMMEX™ problem sets targeted for 
8th-10th grade students. These include Phyto Phiasco, the biology problem described above, Get Organized where 
the goal is to diagnose disorders of organ systems, and a mathematics problem called Paul’s Pepperoni Pizza 
Palace. Subjects generally performed at least 3 cases of each problem set allowing the tracking of changes in EEG-
DT, EEG-E and EEG-WL across cases, as well as across problem sets as students gain experience. In the second 
part of the study we aligned the EEG output metrics on a second-by-second basis with the problem solving actions 
to explore the within-task EEG metric changes. The total session time lasted about 2.5 hours. 

The output of the B-Alert software includes EEG metrics (values ranging from 0.1-1.0) for engagement, distraction 
and workload calculated for each 1-second epoch of EEG using quadratic and linear discriminant function analyses 
of model-selected EEG variables derived from power spectral analysis of the 1-Hz bins from 1-40Hz. These metrics 
have proven utility in tracking both phasic and tonic changes in cognitive states, in predicting errors that result from 
either fatigue or overload and in identifying the transition from novice to expert during skill acquisition. (Berka, 
2004, Berka 2005). 

 

3 RESULTS 
 
3.1 Dynamics of EEG-WL, EEG-DT and EEG-E with Practice  

We first examined the changes in EEG-E, EEG-DT and EEG-WL as students performed their first and second cases 
of different problem sets (n=15) as this is where the greatest shifts in strategy normally occur (Figure 3) (Table 1). 
Only the EEG-E showed significant changes between the two performances decreasing ~20%.  

 

Table 1. EEG Metrics Across Cases 1 and 2. The average EEG-E, EEG-DT and EEG-WL were compared for 7 sets 
of performances of the IMMEX simulations. 

 
 Case 1 Case 2 p 

EEG-E 43 ± 11 36 ± 9 .04 

EEG-DT 13 ± 8.8 22 ± 6 .302 

EEG-WL 56 ± 11 38 ± 11 .132 

 

We then averaged the EEG-Dist, EEG-LE and HE and EEG-HWL during the interval between the test selections. 
These intervals ranged from 11 sec. to 50 sec.  As shown in Table 2  the average Brain State varied over a wide 
range (.52-.69) across the intervals suggesting that a finer analysis, perhaps combined with a more detailed analysis 
of the actions of the student may begin to reveal more subtle aspects of the problem solving process.  For example, 
peak WL was observed during the 2nd and 4th periods suggesting increased problem solving or analysis. 

 

 

 



  

Table 2.  Inter Test Averages of EEG – Measures. 
 Interval B. State %SO %Dist %LE %HE %HWL N = 

all aver  0.60 0.01 0.26 0.44 0.29 0.63 291.00 
1 aver 47 0.56 0.00 0.33 0.38 0.29 0.68 46.00 
2 aver 19 0.49 0.06 0.35 0.31 0.29 0.59 19.00 
3 aver 20 0.57 0.00 0.31 0.52 0.17 0.69 19.00 
4 aver 11 0.61 0.04 0.19 0.47 0.30 0.61 12.00 
5 aver 50 0.69 0.01 0.17 0.45 0.37 0.60 49.00 
6 aver 14 0.64 0.00 0.31 0.42 0.27 0.58 14.00 
7 aver 29 0.56 0.00 0.35 0.43 0.22 0.63 54.00 
8 aver 26 0.52 0.03 0.35 0.37 0.25 0.60 18.00 
9 aver 18 0.60 0.01 0.17 0.54 0.27 0.61 29.00 
10 aver 37 0.65 0.00 0.16 0.47 0.37 0.64 12.00 

 

The average maximum percentage values for Brain State (B. State), Sleep State (SO), Distraction (Dist), Low 
Engagement (LE), High Engagement (HE) and Work Load (WL) were calculated for the intervals between different 
test selections.  Values above the average are highlighted in red. 

While there were no differences in the EEG DT values across the first and second performances of the different 
problem sets, post-session interviews suggested that higher EEG-DT levels might be associated with the difficulty of 
the case. Support for this suggestion is shown in Figure 4 where the IRT item difficulties of the different cases being 
performed are plotted against the EEG-DT levels. The correlation (R2 = .63) was significant (p = 0.03). 
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Figure 4. Correlations between EEG-DT and IMMEX™ case difficulty.  The EEG-DT levels of two individuals 
across six cases of three IMMEX™ problem sets were regressed with the difficulties of the different cases 
previously modeled by IRT analysis from over 8000 student performances. 

3.2 Associating B-Alert EEG Measures with IMMEX™ Problem Solving Events 

We then extended these results by examining the changes in the three cognitive measures within individual cases to 
relate them to problem solving events on a second-by-second basis. In these studies the subjects performed three 
cases of different IMMEX™ problem sets (Paul’s Pepperoni Pizza Palace, Get Organized and Phyto Phiasco) 
simulations.   During these sessions a monitor recorded when the subject made a test selection which was used for 
aligning the EEG data with IMMEX™-related events.  

In Figure 5 shows such an analysis for one student on the first and second cases of Phyto Phiasco.  The limited use 
of background information by this individual, as illustrated by few tests being ordered in the upper left corner of the 
performance maps, suggests that he had domain knowledge.  From the uniform strategic approach across the three 
cases (ANN nodes 9,15,9) all in close proximity on the neural network topology in Figure 3, as well as the limited 
HMM State classification (States 4,4,4) suggests this person also had prior problem solving experience. 

On the first performance there were sustained (2-4 seconds) periods of high / maximum EEG-E closely associated 
with the selection and viewing of new and novel data on the screen and reduced levels during the intervals between 



  

tests.  On the second performance the EEG-E was lower overall (62% vs. 28%) and this was associated with fewer 
periods of sustained EEG-E.  While halfway through the second performance the EEG-E levels showed sustained 
elevation, this was associated with the subject beginning to take notes (Note Taking) rather than the viewing of 
novel data (Figure 5).   

By IRT analysis, the second case being performed was significantly more difficult than the case performed first and 
this was reflected by increased levels of EEG-DT distributed throughout the performance (EEG-DT = 5% on 
performance 1 vs. 25% for performance 2).  During the note taking the EEG-DT levels were reduced while the 
EEG-DT was high.  The EEG-WL was not significantly different across performances and fluctuated throughout 
both episodes and was not obviously correlated with problem solving events, EEG-E or EEG-DT.  

Event Timeline

EEG-E

EEG-DT

EEG-WL

Performance Map - Performance 1
     ANN Node = 9      HMM State = 4

Completion Time 3:23

Performance Map - Performance 2
    ANN Node = 15      HMM State = 4

Completion Time 4:46

Event Timeline

EEG-E

EEG-DT

EEG-WL

Note Taking

 
 
Figure 5. Alignment of EEG-E, EEG-DT and EEG-WL with Problem Solving Events.  The real-time B-Alert EEG 
metrics were aligned with the monitor-recorded problem solving events for two Phyto Phiasco performances of one 



subject.  The upper section of each panel maps how the subject navigated the problem space each time (Stevens et 
al, 2005).  The Event Timeline graphic identifies the sequential test selections for the two performances.  They are 
recorded as 1 for the first test selected, 2 for the second, etc. to make it easier to associate them with the tests in the 
path maps.   The two sets of EEG measures are normalized to the time taken across each performance.  The notation 
‘Note Taking’ on the second performance identifies where the subject began taking notes. 

IMMEX™ tasks are more open-ended in that students may complete the problem using very few tests or many tests. 
Most often individuals will conduct testing with different sequences of tests and with varying intervals between 
tests.  As such, it is likely that both the description and definition of the terms Distraction, Engagement and Working 
Load will change as the B-Alert acquisition and analysis of data is expanded to other complex scenarios. In 
particular, our previous studies have suggested that EEG-DT may be a heterogeneous and interesting metric within 
the context of IMMEX™ problem solving.  One subject performing Phyto Phiasco inadvertently provided the 
opportunity to begin to explore this metric in more detail (Figure 6).  

Figure 6 Effects of Text vs. Animated Data Presentation on EEG Metrics. One subject began two cases of Phyto 
Phiasco with the same starting four tests (labelled 1-4).  The data in tests 1-3 was presented in a text form and 
combined presented the same case-related information as did the single fourth test which was an animation. EEG-E, 
EEG-DT and EEG-WL are presented for case 1 (left) or case 2 (right) beneath the event log for the IMMEX™ 
performances.  

This person began both the first and second cases by examining test data for the Leaves of the Sick Plant, Stems of 
the Sick Plant and Roots of the Sick Plant all of which presented the information in text form.  For the fourth test 
item an animation of the plant growing and dying was selected which essentially combined the data of the first three 
tests into a single test.  On both performances, there was a high and sustained rise in EEG-DT that accounted for 
most of the EEG-DT of the total performance.  By examining the 1Hz bins of the FzPOz and CzPOz channels, 
elevations were seen in the 11, 14 and 33 Hz channels.  As no new data / information was supplied by the fourth 
test, it would suggest that the nature of the presentation may have precipitated significant EEG-DT changes. The 
participant reported being frustrated by the animated presentation in part due to the redundant information but also 
because she preferred the verbal presentation mode. 



  

4 DISCUSSION 

In this manuscript we have begun to associate EEG correlates of attention and memory with probabilistic models of 
complex scientific problem solving by integrating the metrics of EEG-DT, EEG-E and EEG-WL with problem 
solving activities. The original derivation of EEG-DT was through the optimization of train-to-criteria performances 
from documented cognitive working memory tasks, as well as in defense-related applications.  In a study of 9 Navy 
fleet operators performing a 32 missile salvo on a Tactical Tomahawk Weapons Control System the correlation 
between EEG measures of workload, engagement and distraction and an expert’s observed ratings of attention, 
stress, confusion and frustration were evaluated (Poythress, 2006).  Significant positive correlations (p<0.05) were 
obtained between EEG-distraction and expert observed ratings of frustration, confusion, stress.  These data in 
combination with previous results showing a positive relationship between number of errors and levels of EEG-
distraction (Berka, 2006) suggest that this measure may be characteristic of multiple cognitive states including 
distraction, boredom, confusion and frustration.  The investigators plan to explore the possibility of creating several 
sub-classes of what is currently the EEG-distraction metric. 

IMMEX™ tasks are more open-ended in that students may complete the problem using very few tests or many tests.  
Most often individuals will conduct testing with different sequences of tests and with varying intervals between 
tests.  As such, it is likely that both the description and definition of the terms Distraction, Engagement and Working 
Load will change as the B-Alert acquisition and analysis of data is expanded to other complex scenarios.    In 
particular, our results suggest that EEG-DT may be a heterogeneous and interesting metric within the context of 
IMMEX™ problem solving.   

One component would be the physical distraction caused by background environmental noises.  A more problem-
solving related component would be the distraction associated with a student missing the solution to the problem.  
This form of EEG-DT was often followed by a period of increased engagement.  Finally, the correlation between the 
problem difficulty and EEG-DT measures may suggest an involvement in a more subtle form of problem solving 
uncertainty. In this regard it may be similar to the metrics being derived by DuRousseau et al, (2005) that relate to 
one’s confidence in an answer prior to submitting it.  This correlation was mainly observed in more experienced 
users where strategies were more limited and the problems were being solved decreasing the other forms of 
distraction.. As more data is collected, these differences in EEG-DT may provide an opportunity to extend and 
separate existing measures to reflect these components. 

The changes in EEG-E across case performances that we observed were more like what would be expected 
reflecting novelty of the data presentation on the screen.  As EEG-E values generally decreased with experience it 
would appear that this metric is responding more to the appearance of the data presentation rather than the novelty of 
the data within the display. 

The relative uniform values of EEG-WL across different cases suggest this metric may be quite heterogeneous, or 
the changes may be quite small and subtle in the context of IMMEX™ problem solving.  By beginning to segment 
the performance into intervals between the different problem solving events such differences were observed and 
future studies will refine this segment further by examining 5 and 10-second intervals before and after each event. 

As increasing numbers of performances are collected and as the models of EEG metrics are refined and aggregated 
at each ANN node of the problem space topology we will then begin exploring ways of extending existing skill 
acquisition models through the combination of the two approaches. 
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