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Abstract: Our objective was to apply ideas from complexity theory to derive expanded models of Submarine Piloting and Navigation 

(SPAN) showing how teams cognitively respond to task changes and how this was altered with experience.  The cognitive measure 

highlighted was an electroencephalography (EEG)-derived measure of engagement (EEG-E) that was modeled into a collective team 

variable termed neurophysiologic synchronies of engagement (NS_E) thus showing the engagement of each of 6 team members as 

well as the engagement of the team as a whole.  We show that the dominant NS_E patterns were different for novice and experienced 

teams, and that experienced teams used a larger repertoire of potential NS_E patterns.  Estimates of the Shannon entropy of the NS_E 

data streams provided a quantitative history of NS_E fluctuations which were associated with the efficiency of the SPAN teams in 

updating the ship‟s position.  
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INTRODUCTION 

Nonlinear dynamics (NLD) is a general theoretical 

approach for understanding complex systems. When team-

work is viewed as a complex adaptive system there are multi-

ple non-linear dynamic concepts that can be applied including 

self-organization, attractors, phase shifts, instabilities, entropy 

perturbations, and intrinsic dynamics (Cooke et al, 2009; 

Gorman et al, 2010).  The result is a view of teamwork where 

individuals are rich dynamic systems with the state of each 

member depending on the state of others.   

The goal of this study was to apply these ideas to 

neurophysiologic models of Submarine Piloting and Naviga-

tion (SPAN) teams to analyze how the teams reorganize them-

selves in response to changes in the task; and to derive insights 

into the differences between novice and experienced SPAN 

teams.  The measures used, termed Neurophysiologic Syn-

chronies (NS), are symbolic collective team variables derived 

from team members‟ EEG data streams. They represent the 

relative levels of engagement (NS_E) of each person on the 

team as well as the team as a whole.   Previously we have 

shown that NS are dynamic variables whose expression during 

SPAN teamwork was sensitive to short and long-term changes 

in the task and perhaps based on the experience of the team 

(Stevens et al 2009, 2010b).  In this study we apply NLD ap-

proaches to expand this view to provide quantitative associa-

tions between NS_E expression and team performance. 

TASKS AND METHODS 

Submarine Piloting and Navigation Task 

The studies were conducted with navigation tasks 

that are integral training components of the Submarine Officer 

Advanced Course (SOAC) at the US Navy Submarine School, 

Groton, CT. SPAN a high fidelity simulation that contains 

dynamically programmed situation events. There are task-

oriented cues to guide the mission, team-member cues that 

provide information on how other members of the team are 

performing / communicating, and adaptive behaviors that help 

the team adjust in cases where one or more members are under 

stress or are not familiar with aspects of the unfolding situa-

tion.  The teams contain 11-12 members in positions Officer 

on Deck (OOD), Navigator (NAV), Assistant Navigator 

(ANAV), Contact Coordinator (CC), Fathometer (FATH), 
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Helm (HELM), Quartermaster on Watch (QMOW), Radar 

Operator (RAD), Recorder (REC), Periscope Operator 

(SCOPE) and Captain (CAPT) and / or Instructor (INST). 

Twenty-one SPAN sessions were conducted where 

EEG was collected from three to six persons.  The data report-

ed here was derived from twelve of those sessions selected as: 

1) persons in the same six crew positions were being moni-

tored by EEG, 2) the same individuals repeated in the same

positions across 2-5 training sessions over multiple days, and

3) the sample contained three Junior Officer teams and three

experienced submarine navigation teams; these are termed

SOAC and SUB teams respectively.

Each SPAN session begins with a Briefing outlining 

the mission goals and providing information on position, con-

tacts, weather and sea state. The Scenario segment is more 

dynamic and contains easily identified processes of teamwork 

along with others which are less well defined.  One process is 

the regular updating of the ship‟s position termed „Rounds‟. 

Here, three navigation points are chosen, often visually, and 

the bearing of each from the boat is measured and plotted on a 

chart.  This process occurs every three minutes with a count-

down from the 1 minute mark.  The Recorder (REC) counts 

down to the „fix‟ and logs the data.  Interleaved with these 

deterministic events are situations arising from new ship traf-

fic, increased proximity to hazards, equipment malfunctions or 

reduced visibility.  In contrast to the regular updating of the 

submarines‟ position, these events are more perturbations to 

the regular functioning of the team, providing points where the 

resilience of the team may be tested.  Some events are rapid 

like a man overboard, while others evolve over 5-10 minutes 

and can be based on previous decisions.   

Electroencephalography (EEG) 

The B-Alert
®
 system contains an easily-applied wire-

less EEG system that includes intelligent software that identi-

fies and eliminates multiple sources of biological and 

environmental contamination and allows second -by-second 

classification of cognitive state changes such as engagement 

(Berka et al, 2007).  The data processing uses eye-blink de-

contaminated EEG files containing second-by-second calcula-

tions of the probabilities of High EEG-Engagement (EEG-E), 

Low EEG-E, Distraction and High EEG-Workload (EEG-WL) 

(Levendowski et al, 2001, Berka et al, 2004). In this study we 

focus on the probability (from 0 to 100%) of High EEG En-

gagement (EEG-E) which is related to information-gathering, 

visual scanning and increased attention. 

The neuropsychological tasks used to build the algo-

rithm, and subsequently used to individualize the algorithm‟s 

centroids were presented using proprietary acquisition soft-

ware. The algorithm was trained using EEG data collected 

during the Osler maintenance of wakefulness task (OSLER) 

(Krieger et al., 2004), eyes closed passive vigilance (EC), eyes 

open passive vigilance (EO), and 3-choice active vigilance 

(3CVT) tasks to define the classes of sleep onset (SO), distrac-

tion/relaxed wakefulness (DIS), low engagement (LE), and 

high engagement (HE), respectively.  

Simple baseline tasks were used to fit the EEG classi-

fication algorithms to the individual so the cognitive state 

models can be applied to increasingly complex task environ-

ments.  These methods have proven valid in EEG quantifica-

tion of drowsiness-alertness during driving simulation, simple 

and complex cognitive tasks and in military, industrial and 

educational simulation environments (Levendowski et al, 

2002, Stevens et al, 2007, Berka et al, 2005).   

Data Normalization and Modeling 

In this study we created standardized ANN models 

using pooled data from multiple teams which allowed the 

comparison of NS_E expression across teams, training ses-

sions and levels of expertise (Stevens et al, 2011). First, the 

EEG data streams for each person on the team were normal-

ized and combined into vectors describing the EEG-E levels of 

each person.  They were used to train an unsupervised artifi-

cial neural network (ANN) that generates 25 NS patterns rep-

resenting the engagement status of the team.   Each pattern has 

histograms showing the relative EEG-E level of each person. 

An example for a six person team is shown in Figure 1where 

persons 3 and 5 showed high levels of a cognitive measure and 

the remaining were low.  In a NS data stream the expression of 

these patterns represents second- by-second fluctuations of the 

engagement by different members of the team.  

  A topology develops during this training where sim-

ilar vectors cluster together and more disparate vectors are 

pushed away (Figure 2).  For instance, NS_E Patterns 1-5 rep-

resent times where most of the team members had low levels 

of EEG-E; while, NS_E Pattern 24 represents times where 

most team members had high EEG-E. 

Figure 1. Expression of a Generic NS Measure by Members of a Six-

person Team. 

The 25 NS_E Patterns shown in Figure 2 constitute 

the state space of the system, i.e. the possible NS_E levels 

across the six members of the team. 

Figure 2. ANN Pattern Classifications for NS_E.  The NS are numbered 

1-5, 6-10, and etc. row wise. 
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RESULTS 

The starting hypothesis was that many of the second-

by-second changes in team engagement would be small. With 

the linear architecture of the self-organizing ANN and the 

resulting topology of the NS_E symbols this would be reflect-

ed in transition matrices (a plot of the NS_E being expressed 

at time t vs. that at time t+1) as movement around a diagonal.    

Larger state space shifts may reflect the teams‟ response to the 

evolving teamwork or external changes to the task.   

Different NS_E Attractors Exist for SOAC & SUB Teams 

during SPAN Scenarios 

The Scenario segment of SPAN simulations is where 

the navigation task is performed.  The NS_E transition matri-

ces with a 1 second lag are shown in Figure 3 for pooled data 

from six SOAC and six SUB SPAN sessions during the Sce-

nario.  The diagonal line shows the persistence and local tran-

sitions of NS_E patterns with the more frequent transitions 

shown by the higher contours.  The dominant pattern for 

SOAC teams was centered near NS_E 10 & 11.  From Figure 

2, this was where half of the team members had low EEG-E. 

We designate these NS_E patterns as attractors as they are 

states of engagement that the team often persists in / returns 

to.    The attractors for SUB teams clustered near NS_E 22-25 

with the majority of the team members showing high EEG-E. 

A second attractor centered near NS_E 15 where again most 

of the team showed above average EEG-E.  Cross tabulation 

analysis showed the two groups of teams were significantly 

different from one another ( χ2 = 298, df = 24, p <0.001).  The 

SUB teams also showed more minor transitions as evidenced 

by the darker background contours throughout the matrix. 

Figure 3.  NS_E Transition Matrices for SOAC (top) and SUB (lower) 

Teams during the Scenario.  The samples included data from six SOAC 

(14,473 epochs) and six SUB (11,422 epochs) SPAN sessions. 

SOAC and SUB NS_E Attractors Change at Task Bound-

aries  

Transition matrices of both SOAC and SUB teams 

created from the Debriefing segments of SPAN sessions 

showed restricted NS_E Pattern expression that were signifi-

cantly different from the Scenario segment (SOAC Scenario / 

Debrief χ2 = 1362, df = 24 p<0.001; SUB Scenario Debrief χ2 

= 391, df = 24, p<0.001), and different from each other (SUB 

vs SOAC χ2 = 360, df = 24, p<0.001) confined around the 

diagonal (Figure 4).  The main attractors during the debriefing 

showed that the SUB teams switched to overall low levels of 

engagement while the SOAC teams two groups showed transi-

tion patterns that reflected different overall engagement levels 

of the team.   Those of the SUB teams (NS_E 5,8 & 11) repre-

sented periods where many of the team members had below 

levels of EEG-E, while those of SOAC teams (NS_E 14, 18) 

represented periods of above levels of EEG-E for the team . 

Figure 4.  NS_E Transition Matrix for SOAC (top) and SUB (lower) 

Teams during the Debrief.  The samples included pooled data from six 

novice (4,833 epochs), and six expert (3,886 epochs), SPAN teams. 

Capturing a Quantitative History of Attractor Instabilities 

with Shannon Entropy 

While transition matrices help identify preferred tran-

sitions, a more quantitative measure of the teams‟ attractor 

stabilities / instabilities would be useful for linking with other 

metrics of teamwork.    As the NS_E patterns are symbolic, 

one approach would be to calculate the Shannon entropy of 

the NS_E data stream (Shannon, 1951).  The idea of entropy is 

derived from information science and is a measure of the level 

of uncertainty or “amount of mix” in a symbol stream.  Calcu-

lated entropy is expressed in terms of bits and the maximum 

entropy that we could expect from the 25 NS_E patterns 
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would be log2 (25) or 4.64.   As expected from the transition 

matrices, the SUB teams had higher entropy than the SOAC 

teams in the scenario. 

To develop an entropy profile over a SPAN session 

the NS_E Shannon entropy for one SOAC team was calculat-

ed at each epoch using a sliding window of the values from 

the prior 100 seconds.  The idea was that as teams entered an 

attractor state the entropy would decrease as fewer of the 25 

NS_E patterns would be expressed (Figure 5).   

To relate the fluctuations in entropy with the attractor 

states of the team, transition matrix movies were created that 

updated every 8 seconds over a background of the prior 100 

seconds (www.teamneurodynamics.com).  Two transition ma-

trices are shown in Figure 5 for team T4S2.  The left (epochs 

2044 - 2144) was where there was confusion about contacting 

/ avoiding another ship and the team was oscillating between 

two attractors centered near NS 14-15 and NS 9-11.   The right 

matrix shows an uneventful time period (epochs 2350 - 2450).   

Figure 5.  NS_E Entropy Profile for Team T4S2.  This figure shows the 

teams’ Shannon entropy at each epoch over a sliding window of the pre-

vious 100 seconds.  Above the entropy profile are the transition matrices 

for the two highlighted 120 second periods.  

Linking NS_E Entropy, Transition Matrices with Rounds 

Accuracy 

SPAN simulations have the advantage of high ecological va-

lidity as they are realistic simulations and required compo-

nents of the SOAC curriculum.  A limitation of SPAN from a 

research perspective however is there are not detailed perfor-

mance scoring criteria and most performance issues are raised 

and discussed during the Debriefing.  A possible proxy for a 

performance score would be the regularity by which Rounds 

are conducted.  This periodic updating of the submarines‟ po-

sition is conducted every three minutes with a 5-step count-

down during the last minute.   The regularity of this 

countdown, along with possible deviations, can be obtained 

from the speech of the REC who is responsible for the count-

down.  Figure 6 shows the Rounds sequence for 5 SPAN ses-

sions.  All teams had periods where the rhythm of Rounds was 

broken. These periods are highlighted by gray boxes. These 

irregularities can be caused by making a turn, avoiding traffic 

or overloading of the team; they often indicate stressful condi-

tions (Stevens et al, 2011). 

    The SPAN sessions are listed in the order of decreasing 

overall NS_E entropy.  Also shown in Figure 6 are the transi-

tion matrices for each session as well as a second-by-second 

NS_E entropy profiles. The two SUB team sessions, E1S1 and 

E1S2 mostly showed regular and complete 5-step Rounds 

countdowns.  These sessions also had the highest overall 

NS_E entropy which was evident in 1) the more patterned 

background of the transition matrices and, 2) the less jagged 

profile of the NS_E data stream.  The Rounds sequence pat-

terns were more irregular for SOAC teams T4S2 and T5S5 

where steps, and occasionally a complete Rounds sequence 

were omitted. These teams showed more restricted transition 

matrices and more prominent attractor basins than did the 

SUB teams.  The NS_E entropy profiles also contained more 

peaks and troughs.  

 Another expert team E4S2 began the Scenario with 

four effective fixes and then started having difficulties con-

ducting regular rounds.  This example indicates there are like-

ly levels of expertise.  

Figure 6.  Entropy and Rounds for 5 SPAN Sessions.

DISCUSSION 

 In this study we have focused on what we are de-

scribing as attractor states for NS_E, which are simply pre-

ferred patterns of engagement among team members.  Our 

results indicate that the ideas of self-organization and attractor 

states may be relevant for modeling team cognition and the 

engagement of teams in that changes in NS_E attractor dy-

namics occurred across task boundaries and were also sensi-

tive to the effects of team experience. 



Conceptually, one of the challenges in approaching a 

nonlinear description of a system is the definition of order 

parameters and control parameters.  Order patterns are proper-

ties of a system that change, often discontinuously, as a result 

of some external condition.  Control parameters are those that 

can be manipulated to induce instabilities in the system and 

cause the system to enter into different states. The challenge 

for the order parameter was to create a collective variable that 

represented the contribution of each team member at any point 

in time.  The ANN clusters generated from the normalized 

EEG data streams are symbolic, not numeric which directs the 

subsequent data analysis approaches (Daw et al, 2003).   

 One control parameter for the NS_E system is the 

task.  In all SPAN teams we have studied NS_E expression 

undergoes qualitative shifts at the Briefing / Scenario and the 

Scenario / Debriefing junctions (Stevens et al, 2010a, 2010b). 

The state transitions are not just related to the structure of the 

task as other external perturbations to the team, such as the 

pausing of the simulation by the boat captain also induce state 

transitions.  While these state transitions are the most obvious 

in SPAN teamwork, the team also undergoes state transitions 

as a result of the teamwork / task interaction.  In Figure 5, the 

largest decrease in entropy and the stabilization of the largest 

NS_E attractor of the performance occurred near epoch 2000 

without any external perturbation 

The significance of the entropy fluctuations are under 

investigation and we have begun mapping their expression to 

other teamwork / task measures and events.  It will also be 

important to determine if there are critical fluctuations as in-

stabilities in the NS_E data stream develop as they may be 

useful for anticipating an upcoming change in teamwork. 

Similarly, it will be important to document periods of critical 

slowing that may provide an indicator of team recovery. 

The NS_E attractor and entropy differences resulting 

from the second control parameter, team experience, begin to 

highlight some important differences between novice and ex-

pert teams.  First, the dominant NS_E attractor for the expert 

team during the Scenario represents a team where more mem-

bers are engaged / highly engaged than in the novice teams. 

From the transition matrices, the expert teams seem to use 

more of the available NS_E patterns possibly indicating a 

more flexible team and one that does not frequently get locked 

into a restricted pattern of engagement. 

These studies may also suggest an avenue for the de-

velopment of adaptive training systems.  A goal of most train-

ing activities in complex environments is to be able to rapidly 

determine the functional status of a team in order to assess the 

quality of a teams‟ performance / decisions, and to adaptively 

rearrange the team or task components to better optimize the 

team. One of the challenges in accomplishing this goal is the 

development of rapid, relevant and reliable models for provid-

ing this information to the trainers and trainees.  With the 

creation of standardized models of NS_E expression it may 

now be possible to direct real time EEG streams into the mod-

eling system and rapidly report back the entropy and attractor 

basin status of the team. 
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