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Across-brain neurodynamic organizations arise when teams perform coordinated tasks. We describe a symbolic
electroencephalographic (EEG) approach that identifies when team neurodynamic organizations occur and
demonstrate its utility with scientific problem solving and submarine navigation tasks. Each second, neurodynamic
symbols (NS) were created showing the 1–40 Hz EEG power spectral densities for each team member. These data
streams contained a performance history of the team’s across-brain neurodynamic organizations. The degree of
neurodynamic organization was calculated each second from a moving window average of the Shannon entropy
over the task. Decreased NS entropy (i.e., greater neurodynamic organization) was prominent in the ~16 Hz EEG
bins during problem solving, while during submarine navigation, the maximum NS entropy decreases were
~10 Hz and were associated with establishing the ship’s location. Decreased NS entropy also occurred in the
20–40 Hz bins of both teams and was associated with uncertainty or stress. The highest mutual information levels,
calculated from the EEG values of team dyads, were associated with decreased NS entropy, suggesting a link
between these two measures. These studies show entropy and mutual information mapping of symbolic EEG data
streams from teams can be useful for identifying organized across-brain team activation patterns.
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Most organizations could benefit from a deeper under-
standing of the fluctuating dynamics of their teams.
Teams and teamwork are seldom static entities as
teams need to adapt to the continually changing envir-
onmental constraints. With high-performing teams in
rapidly evolving environments, the changing
dynamics can outpace conventional approaches for
understanding them (Wildman, Salas, & Scott,
2014), and it is not always clear how to modify
teams or training in response. The challenges facing
organizations are compounded by the need for

training solutions that are cost-effective, highly auto-
mated, adaptable, and capable of producing quantifi-
able behavioral changes in teams that are indicative of
deep learning.
Teamwork research has historically focused on

macro-level concepts like team effectiveness (Salas,
Stagl, & Burke, 2004) or resilience (Hollnagel, 2009).
In recent years, the interest has shifted toward the
dynamics within the neurodynamic, cognitive and
behavioral data streams that are being collected in
natural settings (Gorman, Amazeen, & Cooke, 2010;
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Onken, Chamanthi, Karunasekara, Kayser, & Panzeri,
2014; Stevens, Galloway, Wang, & Berka, 2012).
One approach for understanding the meso- and

micro-scale temporal dynamics of teams emerges
from the neurodynamically linked concepts of
brain wave synchronization (Will & Berg, 2007)
and across-brain social couplings (Hasson,
Ghazanfar, Glantucci, Garrod, & Keysers, 2011).
It is well established that some electrical rhythms
of the brain synchronize to external repetitive
sounds/images (Adrian & Matthews, 1934;
Galambos, Makeig, & Talmachoff, 1981). These
synchronizations can be simple reflections of the
periodicity of the stimulus sequence or may
include rhythms corresponding to the preferred
rates of perceptomotor behaviors like the produc-
tion of, or listening to music, finger tapping, or
sentence comprehension (Moreno, De Vega, &
León, 2013; Van Noorden & Moelants, 1999).
These findings were extended by Hasson, Nir,
Levy, Fuhrmann, and Malach (2004) to a more
complex situation by having individuals view
scenes from a movie. As the video unfolded, the
embedded visual and auditory elements entrained
the subjects’ cognition with inter-subject synchro-
nizations occurring in the visual, auditory, and
cortical brain regions. The complex nature of the
stimuli in these studies suggested that teams per-
forming complex tasks might exhibit neurody-
namic entrainments similar to those of individuals
watching a movie.
Teams differ from individuals viewing a movie in

that they help shape the storyline by participating as
part of a complex adaptive system that influences, and
is influenced by, other complex adaptive systems like
their teammates, the environment, and other complex
systems with their own sets of teams. Nevertheless,
based on prior brain wave studies, individuals in
teams might be expected to respond similarly to
important events unfolding during the task. If so,
systems could be developed that would identify
when neurodynamic relationships between team mem-
bers entered a coupled state as a result of the unfold-
ing situation and their teammates’ actions. This state
may then persist until a sufficient change in team/task
status leads the team out of this organized state into a
new one. The information contained in these neuro-
dynamic organizations may then be extracted to sup-
port the creation of new measurement systems for
understanding team formation, training, and
performance.
Neurophysiological measures of social coordina-

tion like those described by Tognoli and Kelso
(2013) are obvious choices for developing such

models. Using high-spectral electroencephalography
(EEG) over short time scales (e.g., 1–5 s), these
investigators have described multiple neuromarkers
of social coordination in the 9–12 Hz frequency
range. These markers include the 10.9 Hz phi com-
plex, which is modulated by intentional coordination
(Tognoli, Lagarde, De Guzman, & Kelso, 2007), and
the medial left and right mu EEG components in the
alpha (9–11 Hz) and beta (~15–20 Hz) frequencies,
which may represent activities associated with the
human mirror neuron system (Oberman, Pineda, &
Ramachandran, 2008; Pineda, 2008).
The phenomena of cross-frequency phase syn-

chrony, (Palva & Palva, 2007) and nested oscillations
(Canolty et al., 2006) are also potential contributors to
team neurodynamic organizations as they are strong
contributors to communication, coordination, and
working memory in individuals (Fries, 2005).
The goal of this study was to determine the types

of inferences that can be made about team–task inter-
actions from their changing neurodynamic organiza-
tions. We begin by presenting a symbolic entropy
modeling approach, based on EEG power spectral
densities, for identifying periods of increased team
neurodynamic organization within the 1–40 Hz EEG
frequency spectrum and across the scalp. Next, we
explored the across-task generality of symbolic mod-
eling by contrasting the dynamics on two types of
single-trial natural tasks using quantitative informa-
tion-based measures. These tasks included a map
navigation task (MT) where dyads of high school
students communicated by speech to co-navigate
through a series of map landmarks. The second task
was a required high-fidelity navigation simulation for
five-person US Navy submarine navigation teams.

METHODS

Tasks

Map task

When performing the Human Communication
Research Center’s MT, team members faced each
other while viewing a computer displaying a map
with multiple landmarks (Doherty-Sneddon et al.,
1997). The two maps were similar but not identical
and students could not see each other’s map. The
instruction giver (Giver, abbreviated G), had a printed
path through the landmarks and verbally guided the
follower (Follower, abbreviated F) in duplicating that
path on his/her computer by drawing the line with a
mouse (Figure 1). Occasionally, the mouse drawing
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was delayed due to the microprocessor overload
caused by both the EEG acquisitions and the video
recording, and during these delays, the users often
repeatedly clicked the mouse. Segments with large
numbers of mouse clicks are easily visualized and
served as markers for this unintended task
perturbation.
Students completed the MT using dialog that was

unscripted, fluent, and contained easily identified
goals. Multiple G-F speech exchanges were needed
to draw the path between any two landmarks; in the
figures, these series of speech exchanges are aggre-
gated into what are termed transactions. Each transac-
tion had little dependency on prior transactions,
accomplishments, or decisions.

Seven dyads of eleventh and twelfth grade students
enrolled in advanced placement chemistry courses
were the experimental subjects for the MT; they
received no specific training prior to beginning the
task and no performance feedback was provided to
the teams either during or after the task. Informed
consent was obtained from the parents allowing the
students to participate in the study and to have their
images and speech made available for additional
research analysis.

Submarine piloting and navigation

Submarine piloting and navigation (SPAN) simula-
tions were required exercises for Junior Officers in the

Figure 1. Sample MT performance (#G3S1). The dotted line indicates the target path on the G’s map; the solid line shows the F’s trace. The
performance times (seconds) are marked at different locations, i.e., E 167. There are two segments of the traced path highlighted in dark gray
(~210–250 s) and light gray (~500–600 s) that represent periods of increased MI as described in the text. These periods are also highlighted in
the drawing transactions in Figure 6c.
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Submarine Officer Advanced Candidacy course at the
US Navy Submarine School. SPAN sessions contained
three training segments: briefing, scenario, and debrief-
ing. Briefing was where the team reviewed the envir-
onmental conditions and other ships in the area, and
statically established the submarine’s position. The sce-
nario was the training part of the navigation simulation
where events included encounters with approaching
ships, the need to avoid shoals, changing weather con-
ditions, and instrument failure. One team process in the
scenario required updating the ship’s position every
three minutes. In this process, called “rounds,” three
navigation landmarks were chosen and their visual or
electronic bearings from the boat were measured and
plotted on a chart. The regular “rounds” sequence
usually began with a “1 min to next round” announce-
ment, followed by a “mark the round” call 60 s later.
The observations were made, verified with the esti-
mated position and depth of the water, and then the
call to “end round” was made. The debriefing was an
after-action review where all team members partici-
pated in critical performance discussions.
The experimental SPAN teams included five

crew members: the navigator (NV); the officer on
deck (OD); the contact manager (CM), who kept
track of other ship traffic; the quartermaster (QM),
who maintained the ship’s position; and the radar
operator (RD) (other people were “satellite” team
members but were not directly involved in the team
processes analyzed here).

Electroencephalography

The X-10 wireless headsets from Advanced Brain
Monitoring, Inc. (Carlsbad, CA, USA) were used for
data collection. This wireless EEG headset system
included sensor site locations: F3, F4, C3, C4, P3,
P4, Fz, Cz, POz in a monopolar configuration refer-
enced to linked mastoids; bipolar derivations were
included that have been reported to reflect sensorimo-
tor activity (FzC3) (Wang, Hong, Gao, & Gao, 2007),
workload (F3Cz, C3C4) (Roux & Uhlhaas, 2014) and
alpha wave components of the human mirror neuron
system (Oberman et al., 2008). Embedded within the
EEG data stream from each team member were eye
blinks that were automatically detected and deconta-
minated using interpolation algorithms contained in
the EEG acquisition software (Berka et al., 2004).
These interpolations represented ~5% of the simula-
tion time and in previous studies have not signifi-
cantly influenced the detection of team
neurophysiological activities that occurred throughout
the performances (Stevens & Galloway, 2014; Stevens

et al., 2012). The EEG power spectral density (PSD)
values were computed each second at each sensor for
the 1–40 Hz frequency bins by the B-Alert Lab PSD
Analysis software (Carlsbad, CA, USA).

Symbolic neurodynamic data modeling

The goal was to develop neurodynamic data streams
that had internal structure(s) with temporal informa-
tion about the organization, function, and performance
of teams. A symbolic approach was used to develop
these data streams where the raw EEG data streams of
team members were combined into one composite
complex-valued measure of team organization around
a neurophysiological measure. While illustrated for
MT dyads, the process was similar for teams of 3–6
persons, including SPAN teams (Stevens, Gorman,
Amazeen, Likens, & Galloway, 2013).
The simple averaging of an EEG marker (i.e.,

power levels at a frequency) across members of a
team could be one starting point for modeling team
neurodynamics, and may be particularly useful when
searching for when all team members had elevated or
depressed levels of the marker. The limitation of this
approach is that the relationships between team mem-
bers, their individual roles, and the immediate percep-
tual context do not factor into the aggregate. Also,
periods where all team members had high or low
marker levels are infrequent (Kolm, Stevens, &
Galloway, 2013) and focusing on them would ignore
the other synergistic links between team members
expected at the neurodynamic level. Treating data
from multiple time series as symbols is another
approach that has been used for discovering interest-
ing data patterns in temporal data streams (Daw,
Finney, & Tracy, 2003; Lin, Keogh, Lonardi, &
Chiu, 2003). Below we describe the process of sym-
bol generation for dyads performing MT simulations;
the procedure for SPAN crews is similar, but the
number of symbols was expanded to 25 to accommo-
date the EEG PSD values across the different team
members (Stevens et al., 2013).
To generate neurodynamic symbols (NS), each

second we equated the absolute levels of one EEG
PSD frequency bin (i.e., 40 Hz) of a team member
with his/her own average levels over the period of the
particular task. This identified whether an individual
team member was experiencing above- or below-aver-
age levels of an EEG marker and whether the team as
a whole was experiencing above or below levels.
Classifying the set of symbols over entire MT or
SPAN performances (i.e., including briefing and
debriefing segments) provided neurodynamic models
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encompassing a comprehensive set of task situations/
loads (Fishel, Muth, & Hoover, 2007).
As previously described (Stevens et al., 2013), in

this process the EEG PSD levels were partitioned into
the upper 33%, the lower 33%, and the middle 33%,
which were assigned values of 3, −1, and 1, respec-
tively. The next step combined these values at each
second for each team member into a vector, which
was classified by a pretrained artificial neural network
and assigned a symbol number. We used an unsuper-
vised ANN architecture with 9–100 output nodes
depending on the task and the team. In previous stu-
dies, we have compared the sensitivity of single-trial
ANN versus heterologous networks by wavelet analy-
sis; use of the heterologous networks decreased the
temporal resolution to task events by 5–10 s (Stevens,
Galloway, Wang, Berka, & Behneman, 2011). The
symbols created showed the EEG PSD levels for each
person in the team and situated them in the context of
the levels of the other team member(s) as well as within
the immediate context of the task. These symbol com-
binations also represent the probability distribution of
the team’s response to the ongoing task stimuli.
The symbol from one MT dyad shown in Figure 2a

represented a state where the 40 Hz EEG PSD spectral
band power of G was high and that of F was low. The
nine-symbol state space of the possible dyad combi-
nations is shown in Figure 2b. The resulting perfor-
mance data was a linear sequence of symbols, one for
each second of the task. Quantitative estimates of
symbol distribution along the data stream were made

by calculating the Shannon entropy (Shannon &
Weaver, 1949). This procedure was then repeated for
each of the 39 remaining EEG PSD bins, and across
the EEG monopole and bipolar electrodes to create
three-dimensional neurodynamic entropy maps plot-
ting entropy versus simulation time and EEG PSD
frequency.
The temporal expression of these symbols during

an MT performance is shown in Figure 2c. The rows
show when each of the nine NS symbols in Figure 2b
were expressed. During the first 100 s, NS #2 and 3
appeared more often than NS #7–9. By referencing
Figure 2b, this indicated that G was expressing high
40 Hz EEG power levels while F was expressing
average to low levels. Around 200 s, the NS distribu-
tion changed with NS #1–5 no longer being expressed
and being sequentially replaced by NS #6, with both
members having low power levels, and then NS #8, a
state where G expressed low power levels while F
expressed high levels. This coincided with F having
difficulty drawing the map on the computer with the
mouse as shown by the increased density of the
mouse clicks (Figure 2d).
The line in Figure 2c shows quantitative estimates

of these changing symbol dynamics. These estimates
were calculated and quantitated by measuring the
Shannon entropy,

NS entropy ¼ �
X#NSStates

i¼1
pi � log pi; (1)

Figure 2. Neurodynamic symbol generation and expression. (a) This symbol represented times when G had above-average levels of 40 Hz
EEG spectral power and F had below-average levels. (b) The nine-symbol state space for the MT experiments. (c) Second-by-second expression
of the nine neurodynamic symbols in the 40 Hz PSD bin; the trace indicates the NS entropy levels over a 60 s moving window. (d) Mouse clicks
of the F; the increased density from 150 to 300 s indicated a period of drawing difficulties.
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where pi is the relative frequency of NS state i over a
sliding 60 s window; the entropy was first measured
over the initial 60 s. Then at subsequent seconds the
window was shifted, removing the first symbol and
appending a new one at the end; the entropy was then
recalculated. Performance segments with restricted
symbol expression had lower entropy levels, while
segments with greater symbol diversity had higher
entropy. As reference points, the Shannon entropy
value for nine symbols is 3.17, while if only six
symbols were expressed, the entropy value would
drop to 2.58.
Surrogate data testing was used in all experiments

where the NS data streams were randomized before
the Shannon entropy was calculated; this significantly
increased the NS entropy (3.05 ± .02 vs. 3.12 ± .003,
df = 15, T = −8.6, p < .001).
NS entropy is therefore the measure of a neurophy-

siological organizational process that results in a pro-
longed and restricted relationship(s) between EEG
PSD levels of team members. In this context, periods
of decreased entropy reflected increased neurody-
namic organization. This relationship may exist for
only a single EEG PSD frequency bin or more glob-
ally across multiple PSD frequency bins.
It is important to reiterate that team NS entropy

levels do not necessarily reflect the mean EEG PSD
levels of the teammates. Instead, the symbolic model-
ing emphasizes times when the EEG PSD levels of G
and F had a restricted relationship over a prolonged
time period. These may be times when low NS
entropy at a particular frequency resulted from either
high or low EEG PSD levels for both team members,
but they could also result from other combinatorial
possibilities. It is also important to reiterate that the

neurodynamic fluctuations may vary greatly from one
PSD frequency bin to the next.
These ideas are illustrated in Figure 3 where the

entropy fluctuations of the NS symbols at 16 Hz
(Figure 3a) and 20 Hz (Figure 3b) PSD frequency
bins were compared. From the performance start
until ~200 s, the team alternated between G having
high and F low (NS #3), and the F having high and G
having low 16 Hz levels (NS #8 and 9). Then from
~500 s to the task end, the major NS expressions were
#5 and 6, i.e., both team members with below-average
16 Hz power. Between these times, there was more
heterogeneous symbol expression. Similar organiza-
tions were not seen in the 20 Hz band (Figure 3b)
showing the EEG frequency specificity.
The same procedure was used for constructing the

five-person SPAN team vectors and symbols, the
exception being the use of 25 rather than 9 neural
network output symbols. This increase in the symbol
state space from 9 to 25 raised the maximum possible
NS entropy level to 4.64 (i.e., log2 (25)).

Mutual information of team dyads

The fluctuations in the NS entropy identify periods of
changing team neurodynamic organization but they
provide little information about the possible roles
that synergistic interactions among the team members
play in these organizations; mutual information (MI)
descriptions help supply this data. MI is a quantity
that measures the mutual dependence of two variables.
MI has been widely used for evaluating information
representations, transmissions, and content in single

Figure 3. (a) The NS in the 16 Hz and (b) the 20 Hz PSD frequency bins were plotted each second (left scale); the tracings indicate the NS
entropy levels (right scale).
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neuron or populations of neurons stimulus- responses
paradigms (Onken et al., 2014; Schneidman, Bialek,
& Berry, 2003), as well as for reverse engineering
gene regulatory and other complex networks
(Villaverde, Ross, Moran, & Banga, 2014). We
wished to determine whether MI could complement
NS entropy measures for understanding the structure
of interactions between team members from the neu-
rodynamic data. Two different sources of symbols
were used for calculating MI in our studies. For the
MT dyads, or for dyads constructed from the five
crew members in SPAN, the EEG PSD state represen-
tations (i.e., −1, 1, and 3) described in Figure 2 were
used symbolically. In SPAN studies where the MI was
calculated between two pairs of crew members, we
used the 25 NS state space symbols. In all studies, a
moving-average window approach for MI data report-
ing was used as described above for NS entropy to
directly compare the temporal changes and to relate
the two measures to task events.

RESULTS

EEG frequency and NS entropy profiles

The variability of team NS entropy across the EEG
PSD spectrum was determined for MT (Figure 4a) and
SPAN team performances (Figure 4b). The major
organizational locus for MT teams was in the
15–17 Hz PSD bins, while for SPAN teams it was in
the 9–11 Hz bins. For both tasks, there was a down-
ward trend in NS entropy with increasing frequency

indicating additional organizations in the high beta/
low gamma regions.
For the MT performances, the lowest total NS

entropy and the 16 Hz EEG NS entropy levels
occurred when measured at the FzC3 and C3C4 sen-
sor channels. For SPAN team performances, the low-
est total NS entropy levels were again seen at the
FzC3 and C3C4 sensor channels, but at the 10 Hz
EEG band, the largest NS entropy decreases occurred
when measured at the FzP0 and CzP0 sensor chan-
nels; the difference was significant when compared
with the FzC3 and C3C4 sensor channels
(4.32 ± .016 vs. 4.29 ± .017, df = 12, T = −2.4,
p < .04). The results also suggest the differential
involvement of brain regions and EEG frequencies
in team neurodynamic organizations.
The team-averaged raw EEG power spectra for the

MT (Figure 4e) and SPAN teams (Figure 4f) were
calculated by averaging the PSD from each of the
team members at each EEG frequency bin; the spectra
profiles were similar for both sets of teams.

Neurodynamic entropy maps: MT

To easily visualize the temporal and frequency rela-
tionships of neurodynamic entropy expression, mod-
els were developed for individual team performances
where the NS entropy was plotted each second versus
the forty 1 Hz PSD frequency bins (Figure 5). When
viewed as a contour map from above, the periods of
decreased NS entropy (i.e., increased team neurody-
namic organization) appeared as darkened contours.
These periods could then be related to team activities

Figure 4. Plot of NS entropy versus EEG PSD bins for (a) MT (n = 7) and (b) SPAN (n = 7) teams. The NS entropy versus EEG PSD profiles
are shown for the FzP0, CzP0, F3Cz, C3C4, and FzC3 sensor combinations for (c) MT and (d) SPAN teams. The raw EEG PSD spectra are
shown for MT teams (e) and SPAN teams F where the values for each PSD bin were averaged across the members of each team before
generating the plots.
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and events as shown in Figure 5 for one MT team.
The decreased 16 Hz NS entropy in this figure was
seen during the first 2.5 min and in the last three
minutes of the performance. The lowest overall NS
entropy occurred during the 120 s interval when F had
problems drawing (~160–280 s) (Figure 5b), which is
shown by the concentrated mouse clicks around 260 s.
This decrease in NS entropy was distributed across the
~25–40 Hz region, indicating that the task perturba-
tion shifted the EEG frequencies where the team
neurodynamic organizations occurred as well as
increased the level of organization. As a control, the
NS entropy calculations and three-dimensional map-
pings were created from the randomized 1–40 Hz NS
symbol streams; this removed the NS entropy con-
tours (Figure 5c). The team-combined and -averaged

raw EEG PSD values for G and F also had little
evidence of organizational structures (Figure 5d).
The MT is speech intensive that could produce

artifacts in EEG alpha and beta frequencies
(Friedman & Thayer, 1991). To determine whether
speech induced periods of team neurodynamic orga-
nization in our tasks, an analysis of variance was
conducted for three MT teams comparing NS entropy
when G, F, or nobody was speaking. Between-group
comparisons showed the lowest NS entropy when no
one was speaking (no speech = 2.86 ± .37, (F speak-
ing) = 2.92 ± .24, (G speaking) = 2.96 ± .23, F = 16.5,
df = 2, p < .001). There were also multiple perfor-
mances when there was low NS entropy while there
was no speech (e.g., Figures 2 and 5), particularly
when F had drawing problems. If speech effects

Figure 5. (a) Neurodynamic organizational models for the 1–40 Hz frequency channels were assembled into a three-dimensional temporal/
frequency map. (b) An NS entropy profile was created of the performance by row-wise summation of the entropy values; the white bars indicate
drawing mouse clicks. (c) The NS for each EEG PSD bin were randomized before calculating entropy levels and creating the neurodynamic
organizational models. (d) The combined G and F EEG power values at each of the forty PSD frequency bins were averaged and plotted versus
performance time.
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were present, they did not contribute to the increased
neurodynamic organizations observed at the sampling
rate of 1 Hz.

Mutual information: MT

NS entropy fluctuations identify periods of changing
team neurodynamic organization but they provide lit-
tle information about the possible roles that synergis-
tic interactions among the team members play in these
organizations. In the next studies, we compared the
dynamics of MI expression with the dynamics of the
NS entropy data streams and situated them within the
changing events and activities of a MT performance
(Figure 6). The MI values at 10, 16, and 38 Hz EEG
bins are highlighted, as from Figure 4 the entropy-
based neurodynamic organizations were the greatest
around these frequency bins. The MI moving averages
for one MT performance (Figure 6d and e) are dis-
played in the context of the F’s drawing mouse clicks
(Figure 6a), the speech periods of G and F

(Figure 6b), the drawing transactions (Figure 6c),
and the NS entropy profiles (Figure 6f). This was
one of the lower performances (the map tracing is
shown in Figure 1) where there were two major path
deviations, one around 210–250 s, and one between
600 and 740 s. There was also a period between 400
and 500 s when F experienced problems navigating
the mouse and was unable to draw lines; during this
time there were repeated mouse clicks (Figure 6a) and
little speech (Figure 6b). There were isolated periods
of increased MI in each of the three EEG frequency
bands; ~200–300 s and 500–600 s for 10 Hz MI, and
~425 s for 16 Hz MI. The 10 Hz MI was absent
during the time of drawing difficulties, while most
of the 16 Hz MI increase was during this time.
There was one period of increased 38 Hz MI that
occurred shortly after the period of drawing difficul-
ties (~450 s).
A second comparison of the 10, 16, and 38 Hz MI

and the average NS entropy dynamics is shown for the
MT performance of a different team where F also had
mouse-drawing difficulties at ~580–650 s (Figure 7).

Figure 6. Linking NS entropy and mutual information with MT events and activities. The levels of the CzP0 10 Hz and 16 Hz NS entropy (f)
and MI (d, e) are temporally aligned with the mouse clicks of the F (a), the speech periods of G and F (b), the transaction times for drawing
segments (c).
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There were two periods of increased 10 HzMI between
~375 s and 525 s and two periods of 16 Hz MI, one of
which coincided with the first period of increased
10 Hz MI. Similar to the performance in Figure 6, the
NS entropy drop associated with the mouse-drawing
problems showed low MI at the 10 Hz PSD band and a
small increase in 16 Hz MI. There was a single 38 Hz
MI peak, and this was present just before the period of
F’s drawing difficulties.
These results indicated that for the MT the periods

of elevated MI did not occur continuously across all
EEG frequencies but appeared intermittently and
lasted ~45–60 s. For the most part, there was little
overlap in the 10, 16, and 38 Hz MI peaks.

Neurodynamic entropy fluctuations
during SPAN

The MT results showed (1) that most team neurody-
namic organizations occurred around ~16–17 Hz and
did not appear random; (2) the organizations were
prolonged (2–4 min) and could be triggered by per-
turbations; and (3) similar plots of team-averaged raw
EEG PSD frequency bin levels did not reveal these

organizations. To expand the scope of this analytic
approach, additional studies were conducted with five-
person SPAN teams. In comparison with the ~16 Hz
organizations observed during the MT, SPAN perfor-
mances showed the greatest neurodynamic organiza-
tions at ~10 Hz (Figure 4b).
The briefing, scenario, and debriefing segments of

SPAN constitute the top-level task structures. Each of
these segments are lengthy (20–50+ min), and task
effects on team organization should be most apparent
across these segments. The levels of NS entropy were
calculated across the 1–40 Hz EEG frequency bins
and were significantly higher for the scenario than
either the briefing or debriefing (F = 3.52, df = 2,
p = .04) (Figure 8).
The neurodynamic entropy profiles across frequen-

cies indicated the least neurodynamic organization
(i.e., higher NS entropy) at the lower frequencies
and progressively more organization (i.e., decreased
NS entropy) toward the 40 Hz EEG band. In the three
profiles, there was also a major region of team orga-
nization in the 8–13 Hz frequencies (i.e., the alpha
region), which was greater in the debriefing segment
when compared with the briefing or scenario
(F = 7.88, df = 2, p = .002).

Figure 7. Linking mouse clicks with the 10, 16, and 38 Hz NS entropy and mutual information for a second MT performance.
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Surrogate data testing was used in all experiments
to determine whether the neurodynamic organizations
were due to the sequential ordering of the symbols in
the data streams. In this process, the NS symbol
streams are randomly shuffled before performing the
entropy calculations; this process resulted in a uni-
form higher level of entropy for the three training
segments. The entropy values are based on the dis-
tribution of the 25 NS in the data streams, and the
maximum entropy expected would be 4.64. The scale
to the right of Figure 8 shows that following rando-
mization the NS entropy level was 4.4 or ~22 sym-
bols. The period of maximum organization in the
debriefing was 4.1 or ~17 symbols, about a 25%
change in team organization.
A temporal/frequency neurodynamic entropy map

was created for one SPAN performance where there
was an external perturbation when the instructor
paused the simulation. The temporal/frequency map
in Figure 9 showed that the 10 Hz fluctuations were
absent during the debriefing and present in the sce-
nario except for a period between 1800 and 2300 s. In
the scenario, they appeared periodic and temporally
aligned with the “rounds” cycles, which are marked in
Figure 9a by the asterisks.
Between 1600 and 2000 s, the team had problems

establishing the submarine’s position due to instru-
ment failures inserted by the instructor. These diffi-
culties resulted in the instructor pausing the
simulation to review the challenges (~2050 s). The
10 Hz neurodynamic organizations were absent until

the simulation restarted (~2300 s). While the level of
team organization in the 10 Hz PSD band declined
during the break, there was increased organization in
the ~15–40 Hz EEG PSD bins. This organization was
most pronounced during the period leading to the
simulation pause. This quantitative change in the NS
entropy profile at 10 Hz was not reflected in the raw
EEG PSD profile created by averaging the power
values across the crew (Figure 9c).
The dynamical associations between the “rounds”

cycles and the 10 Hz PSD team neurodynamic orga-
nizations were further explored in the 60 s interval
between the “1 min to next round” and the “mark
round” calls (Figure 10a). Across 10 “rounds” cycles
selected before and after the instructor’s pause, the NS
entropy in the 10 s before the “mark rounds” call was
significantly lower than that in the 10 s before the
“1 min to next round” or the remaining seconds dur-
ing the scenario (“mark rounds” = 3.45 ± 0.1 bits;
“1 min to next round” = 3.59 ± 0.1 bits; remaining
seconds = 3.50 ± 0.1 bits; H = 56.1, df = 2, p < .001;
Kruskal–Wallis H test). As a control, when similar

Figure 8. Frequency–entropy submarine piloting and navigation
team profiles. The NS entropy streams from 10 submarine naviga-
tion performances were separated into the briefing, scenario, and
debriefing segments and the frequency–entropy profiles were calcu-
lated. The EEG frequencies corresponding to the delta, theta, alpha,
beta, and gamma ranges are indicated by Greek characters.
Randomizing the data streams resulted in the NS entropy profiles
at the top of the screen. The scale to the right translates the NS
entropy levels into the number of symbols represented.

Figure 9. (a) NS entropy models were created for each of the
1–40 Hz frequencies of a SPAN team performance and assembled
into a three-dimensional temporal/frequency entropy map.
Significant events are labeled to the left, and the asterisks indicate
the “mark rounds” calls. (b) The entropy values were summed
column-wise creating a frequency–entropy histogram. (c) The raw
EEG PSD spectrum was generated from the averaged values of each
of the crew members.
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comparisons were made using the NS entropy at the
20 Hz bin, they were not significantly different
(H = 2.8, df = 2, p = .24).
We also compared the raw EEG 10 Hz PSD levels

at 10 s before the “1 min to next rounds” call with
those 10 s before the “mark rounds” call; the results
were not significantly different (“1 min to next
round” = 2.18 ± 0.07; “mark round” = 2.19 ± 0.02;
t = −0.35, df = 9, p = .73). As expected from these
results, the second-by-second profile of the team-aver-
aged raw 10 Hz PSD showed no trends during the 60
s interval between the “1 min to next round” and
“mark rounds” calls (Figure 10a).
The interval between “1 min to the mark round”

and “mark round” calls was generally 60 s, while
those from the “mark round” to “end round” calls
varied from seconds to minutes depending on the
accuracy of the fix. This variability complicated
studying the postfix NS entropy dynamics with all
“rounds” cycles. There were four “rounds” cycles

where that interval approximated 60 s and these
were used for the post “mark the round” modeling.
In these intervals, the 10 Hz NS entropy values gen-
erally began rising 10–15 s before the “mark round”
call and continued an upward trend for the next 60 s
(Figure 10b).

Mutual information: SPAN

The NS entropy and MI comparisons for the MT G
and F dyads indicated that temporal increases in MI
occurred intermittently during a performance and
were often aligned near periods of decreased NS
entropy. The MT results in Figures 6 and 7 empha-
sized differences across EEG frequency bins at a
single EEG sensor channel (either CzP0 or FzC3),
and showed that MI increases could be found in the
10, 16, and 38 Hz EEG frequency bins.
We next extended the comparisons between NS

entropy fluctuations and team MI levels to the SPAN
performance that was highlighted in Figure 9. Rather
than emphasize across EEG frequency differences, the
studies in Figure 11 compared the averaged MI levels
for all EEG frequencies for the different EEG sensor
channels, i.e., FzP0, CzP0, FzC3, and C3C4. The
across-sensor, across-frequency mean NS entropy for
this performance is shown in Figure 11a with the
periods of decreased NS entropy at ~1150, 1650,
and 2100 s corresponding to the darkened contours
in Figure 9.
Based on the NS entropy × EEG PSD frequency

profiles shown in Figure 8, the different dyad MI
calculations were performed using data combined
from either the FzP0 and CzP0 sensors or the FzC3
and C3C4 sensor channels; also shown in Figure 11b
is the NS entropy levels for these sensor channels.
Each of the six dyad combinations showed one or

more periods of increased MI that generally lasted
45–90 s (Figure 11c–h). Across the different dyad
combinations, there were MI spikes that closely
aligned with one of the major drops in NS entropy.

DISCUSSION

Team rhythms can be thought of as emergent proper-
ties arising from team members performing individual
tasks and sharing information with other team mem-
bers. In this context, it is likely that team rhythms
across scales from seconds to minutes contribute to
what is behaviorally seen as the rhythm of a team. In
line with Ashby’s (1956) law of requisite variety, the
rhythm of a team is always changing in response to

Figure 10. Dynamics of 10 Hz neurodynamic organizations dur-
ing “rounds.” (a) Ten “rounds” cycles were aligned with the “1 min
to mark round” call and the mean 10 Hz NS entropy values were
plotted each second until the “mark round” call. The gray line
shows the average of the raw 10 Hz PSD power levels of the
crew members. (b) The NS entropy was plotted for four “rounds”
cycles with similar durations from the “mark round” to the “end
round” calls.
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the varying constraints imposed by the environment.
When the challenges in the environmental landscape
exceed the base level of complexity for the team’s
experience, then the overall team rhythm can be lost
and the crew must work dynamically to reconfigure
their interactions to establish new rhythms matched to
the new constraints of the task. Identifying these per-
iods of adaptive change could give a clearer picture of
the antecedent events as well as the dynamical pro-
cesses by which teams regain an operational rhythm.
This study describes an EEG-based hyperscanning

approach for modeling these neurodynamic reorgani-
zations in response to shifting task demands. Our
operational definition of neurodynamic organization
was when there were persistent (seconds to minutes)
EEG PSD relationship(s) among some or all crew
members. To detect these organizations, we developed

a symbolic modeling system that scales across both
team size and task complexity. For these studies, we
chose to limit our modeling to simultaneous measure-
ments across team members although there are well-
known lead-lag relationships that occur during con-
versation and nonverbal mirroring (Ashenfelter,
2007). There is nothing to preclude such lagged mod-
eling in the future, however.
During these neurodynamic organizations, the

Shannon entropy of the NS symbol streams dropped
as fewer of the potential neurodynamic symbol states
were being expressed over a window of time. The
simultaneous modeling of the 1–40 Hz EEG fre-
quency bins across multiple sensor locations provided
a coarse-grained analysis of the temporal changes in
the neurodynamic organization of the teams that could
be related to task events. The analysis also provided a

Figure 11. NS entropy and mutual information dynamics during submarine piloting and navigation. (a) The NS entropy levels were averaged
for the 1–40 Hz frequency channels across the FzP0, CZP0, FzC3, and C3C4 EEG sensor channels. (b) The across-frequency NS entropy levels
were averaged for the (FzP0 and CzP0) and (FzC3 and C3C4) channels and plotted versus time. (c–h) The mutual information was calculated
for the (c) QM-NV, (d) RD-CM, (e) QM-CM, (d) OD-NV, (e) NV-RD, and the (h) RD-OD dyads; profiles are shown in each display for the
averages at the FzP0 + CzP0 (black) or FzC3 + C3C4 (gray) channels.
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rapid way to relate these dynamics to previously
described social coordination measures in the alpha
and beta EEG regions (Tognoli & Kelso, 2013).
During both tasks, there was decreased NS entropy

in most EEG frequency bins, although the decreases
in the delta (0.5–3.5 Hz) and theta bands were small.
This may be due in part to delta and theta rhythms
being more associated with individual rather than
team actions/activities. Delta oscillations are often
associated with deep sleep, although more recent stu-
dies suggest a role in the inhibition of sensory stimuli
that interfere with internal concentration (Harmony,
2013). Theta oscillations (~7 Hz) play important
roles in what appear to be properties of individuals
rather than teams, such as representing spatial infor-
mation, predictive navigation, and memory encoding
and retrieval (Battaglia, Sutherland, & McNaughton,
2004; O’Keefe & Dostrovsky, 1971).
The primary neurodynamic organizations of the

MT teams were in the 15–17 Hz EEG frequency
bins while the largest organizations occurred in
SPAN teams in the 9–12 Hz bins. As both frequency
ranges contain previously described social coordina-
tion markers, this was not surprising (Pineda, 2008;
Tognoli & Kelso, 2013). More surprising was the
apparent differential expressions of these synchroniza-
tions across the two tasks. The ~16 Hz organizational
activity in MT teams was suggestive of mu rhythms,
an index of pre-motor activity (Oberman et al., 2008;
Pineda, 2008). Mu rhythms are characterized by an
alpha component of ~8–13 Hz attributed to sensori-
motor areas (S1 M1) and a beta component of ~15–
20 Hz, which may link to anticipatory motor activities
that are modulated by the direct observation and ima-
gination of movement. Planning as well as the execu-
tion of hand movements desynchronize (i.e., suppress)
these rhythms, while inhibition of motor behavior
enhances their activity (Caetano, Jousmaki, & Hari,
2007; Menoret et al., 2014). Mu rhythms may be
present and modulated during the MT as a result of
the hand gestures that were often exchanged when the
face-to-face dyads communicated the relationships of
the path/landmarks to one another.
The dynamics of the ~10 Hz expression in SPAN

teams presented a different coordination picture. The
~10 Hz NS entropy decreases were greatest in the
debriefing segment of SPAN, where the crew takes
turns reviewing the session from their perspective and
responding to the instructor’s comments; there was
seldom more than one person speaking at a time.
The decreases in 10 Hz NS entropy were less in the
briefing when the team members calibrated their
instruments and conducted an initial “round” to estab-
lish the ship’s starting position. The 10 Hz NS entropy

was highest in the scenario with at least a portion of
the neurodynamic organization resulting from the
coordinated activity of periodically establishing the
ship’s position. Although alpha rhythms have multiple
topological origins in the brain, the limited number of
EEG sensors used for data collection precluded a
more detailed differential description of alpha band
dynamics.
We were surprised to find that the largest neurody-

namic organizations occurred in the 35–40 Hz EEG
bins as we are not aware of other descriptions of
gamma band synchronizations during social coordina-
tion. As gamma oscillations are often short-lived, the
neurodynamic organizations observed may be exam-
ples of coincidental synchrony or perhaps cross-fre-
quency coupling with other EEG frequencies. Such
couplings between alpha and gamma have been impli-
cated in the maintenance of information in working
memory (Palva & Palva, 2007; Roux & Uhlhaas,
2014). In this regard, the gamma band neurodynamic
organizations often occurred around unexpected task
disturbances (i.e., drawing difficulties in MT and the
pause of the simulation for SPAN).
Describing the role of these neurodynamic organi-

zations with regard to team function, performance,
and synchrony depends in part on relating the neuro-
dynamic organizations identified by changes in NS
entropy with ideas on the form(s) of synchrony
being observed. Burgess (2013) recently distinguished
four different forms of across-system synchronizations
that have relevance for hyperscanning studies. These
include coincidental synchrony when noncoupled
events occur simultaneously, an example being check-
out lines in a store; external entrainment, an example
being musicians playing in time to a metronome;
driven synchrony where the behavior of one indivi-
dual drives the behavior of others, i.e., an audience
listening to a lecture; and reciprocal synchronization
as seen in the repetitive speaker–listener couplings
described by Baess et al. (2012) and Dumas, Nadel,
Soussignan, Martinerie, and Garnero (2010).
The fluctuations in the NS entropy identify periods

of changing team neurodynamic organization, but
they provide little information about the possible
roles that synchronous interactions among the team
members played in these organizations. To better situ-
ate NS entropy changes into a model of team informa-
tion flows, we determined the mutual dependence of
the EEG PSD levels (i.e., MI) for dyads within the
experimental teams.
The MT studies in Figures 6 and 7 examined MI

expression at different EEG frequency bins for a sin-
gle EEG sensor channel, and periods of elevated MI
were seen within the 10, 16, and 38 Hz PSD bins.
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Unlike the more continuous fluctuations seen in NS
entropy that evolved over several minutes, the ele-
vated MI levels were shorter (~45–60 s) and more
isolated.
The five-person submarine navigation teams are

more complex due to the number of possible dyad
combinations. To simplify the exploration of the MI
dynamics across these dyads, we averaged the MI
across the 1–40 Hz frequency spectrum and displayed
the NS entropy profiles for the combined values of the
FzP0 + CzP0 channels and the FzC3 + C3C4 chan-
nels. Aggregating the data in this way seemed a
reasonable first approximation from the differential
NS entropy levels seen across the different EED chan-
nels shown in Figure 4. While there were a limited
number of MI peaks for each dyad, these were often
aligned with periods of decreased NS entropy.
The differential dynamics of MI and NS entropy

may provide different avenues for training and future
research. NS entropy fluctuations can provide a rapid
overview of team dynamics that could be a useful
adjunct for team training. Capturing the frequency,
magnitude, and duration of the times when teams
neurodynamically reorganize could help instructors
not only quantitatively infer the skill level of a team
but also identify situations when the team was chal-
lenged, providing targets for future training activities.
While NS entropy does not provide immediate details
as to the nature of the reorganizations, this informa-
tion can be derived by inspection of the NS symbol
expressions and state diagrams.
The finer granularity of MI, on the other hand,

would enable more precise temporal comparisons
with other measures of teamwork like speech
(Gorman, Martin, Dunbar, Stevens, & Galloway,
2013). The MI expressions in larger teams with multi-
ple dyad combinations may provide ways for tracking
interaction flows throughout teams. This is illustrated
in Figure 12 where the maximum MI for the QM-NV
and QM-CC dyads appear temporally embedded
within a larger NS entropy fluctuation.
In this regard, NS entropy may be a “slow” vari-

able in the sense that it integrates multiple more
microscopic processes, here illustrated for MI. In
other social systems, slow variables serve as better
predictors of the local future configuration of a system
than the states of the fluctuating more microscopic
components (Flack, 2012). In this way, we can begin
to think about modeling networks of information
flows that span different scales of teamwork
(Villaverde et al., 2014).
One approach toward building these models would

draw from the work on neuronal population codes that
have been used to study how spike trains encode

sensory variables (Onken et al., 2014; Quiroga &
Panzeri, 2009; Schneidman et al., 2003). These stu-
dies have used MI approaches to capture information
flows from populations of neurons under stimulus-
repeat and single-trial experimental paradigms. For
teaming studies, the MI from different dyads, from
different EEG channels and different frequency bins
might be viewed as “spike trains” from which team
information might be similarly extracted, analyzed,
and quantified.
With defined symbol spaces, quantitative descrip-

tions can be made about the neurodynamic organiza-
tions of teams in shifting environmental landscapes,
whether these charges are abrupt like those associated
with major shifts in the segments of the task like
briefing, scenario, and debriefing for submarine
teams or when teams become challenged by external
perturbations. The NS entropy and MI measures also
simplify quantitative comparisons across teams or
over time across training sessions, expanding our
understanding of team dynamics in natural settings
by identifying the types of events that trigger team
reorganizations.
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