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The quality of a team depends on its ability to deliver information through a hierarchy of team members and
negotiate processes spanning different time scales. That structure and the behavior that results from it pose
problems for researchers because multiply-nested interactions are not easily separated. We explored the behavior
of a six-person team engaged in a Submarine Piloting and Navigation (SPAN) task using the tools of dynamical
systems. The data were a single entropy time series that showed the distribution of activity across six team
members, as recorded by nine-channel electroencephalography (EEG). A single team’s data were analyzed for the
purposes of illustrating the utility of multifractal analysis and allowing for in-depth exploratory analysis of temporal
characteristics. Could the meaningful events experienced by one of these teams be captured using multifractal
analysis, a dynamical systems tool that is specifically designed to extract patterns across levels of analysis? Results
indicate that nested patterns of team activity can be identified from neural data streams, including both routine and
novel events. The novelty of this tool is the ability to identify social patterns from the brain activity of individuals
in the social interaction. Implications for application and future directions of this research are discussed.
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Teamwork is a fundamental activity that is observed
across business, educational, sports, and military set-
tings. Across all of these settings, the best teams
demonstrate the same essential characteristics: They
coordinate their activities in diverse ways and are able
to switch quickly between performing routine tasks and
trouble-shooting unforeseen interruptions. One of the
features of teams that makes them productive can also
make them difficult to analyze: Teams are hierarchi-
cally arranged, with individuals working in smaller,

specialized units that are themselves nested within lar-
ger units. This complex nested structure is well suited
to fulfilling work goals because responsibilities are
distributed across specialty groups whose members
need only focus on a portion of the overall team task.
However, that same nested structure poses problems for
traditional approaches to team cognition and perfor-
mance due to the reliance on comparisons of measured
performance that are aggregated across individuals.
With nested structures, the challenge is to decide on a
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particular level of aggregation—a small ensemble or
the entire team—a task that becomes nearly impossible
if individuals are differently grouped for different pur-
poses. In the current work, we explore the benefits of a
dynamical systems approach to team hierarchies and
demonstrate a method by which to capture the nested
character of team performance.

THE NESTED NATURE OF TEAMS

Familiarity with nearly any organizational chart reveals
the nested structure of teams. Figure 1 depicts the
hierarchical organization of a hypothetical marketing
department with a board of directors and chief execu-
tive officer (CEO) at the top and various teams, indi-
viduals, and physiological processes situated at lower
levels. The department is divided into east and west
divisions, with brand management and marketing strat-
egy teams nested within each of those geographically
identified sub-teams. At each subsequent level of the
hierarchy, there is further evidence of nesting: Brand

management contains publications, communications,
and event planning teams, which are each composed
of different ensembles of individuals. Often, indivi-
duals contribute to more than one sub-team, resulting
in a very complicated branching structure.

The nesting continues at scales smaller than the
individual: Just as individuals can be nested within
organizational teams, so are physiological processes
nested within individuals, producing a physiological
extension of the hierarchy commonly considered in
team research (Cooke, Gorman, Myers, & Duran,
2013). Physiological processes vary considerably over
a workday and contribute to ebbs and flows in an indi-
vidual’s—and, by extension, a team’s—productivity.
Some obvious examples include processes related to
neural, cardiac, and respiratory activities. Inclusion of
those physiological processes in our organizational chart
increases substantially the levels of influence that con-
tribute to a full understanding of team performance and
is a natural step in the evolution of team study.

The reason for situating physiological processes
within the team concept may be obvious as various

Figure 1. Organizational chart of a hypothetical marketing team. Tracing from the top to the bottom of the figure reveals the hierarchical
structure typical of team organization and shows that there are many levels at which to assess team performance.
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neural measurements, such as electroencephalography
(EEG), magnetoencephalography (MEG), and func-
tional magnetic resonance imaging (fMRI), have come
to play a prominent role in many areas of psychological
science. Even within the area of cognition, researchers
use these brain imaging techniques to look for neural
correlates for cognitive processes such as attention (e.g.,
Coull, 1998), decision-making (Sanfey, Rilling,
Aronson, Nystrom, & Cohen, 2003), episodic and work-
ing memory (e.g., Cabeza, Dolcos, Graham, & Nyberg,
2002; Paulesu, Frith, & Frackowiak, 1993), and lexical
processing (Joubert et al., 2004). One challenge that
these researchers face is situating specific processes
and events within specific neural structures or patterns
(Gonzales-Castillo et al., 2012). Our intention here is not
to question the utility of brain imaging techniques in the
study of human behavior as that argument is beyond the
scope of the current work and has been discussed exten-
sively elsewhere (Uttal, 2001). Instead we offer the
possibility that, in at least some instances, neural studies
may suffer as a result of the assumption that brain
activity exclusively reflects intraperson dynamics and,
more specifically, individual cognitive processes. An
alternative way of thinking is that brain dynamics also
reflect, and may be inseparable from, the situation or
context in which individuals are embedded. The prece-
dence for that assumption stems from the study of inter-
person coordination in the context of dyads (e.g.,
Schmidt, Carello, & Turvey, 1990) and teams
(Gorman, Amazeen, & Cooke, 2010).

A common means of studying interperson behavior
is to require individuals to perform a simple task, such
as swinging their legs or rocking chairs together (e.g.,
Richardson, Marsh, Isenhower, Goodman, & Schmidt,
2007; Schmidt et al., 1990). In the prototypical experi-
ment, participants are required to jointly maintain
some pattern—such as a zero-degree phase relation-
ship between their effectors—over the course of an
experimental trial. The overwhelming finding is that
when the participants are coupled in some way (e.g.,
watching each other’s movements), their movements
become synchronized, sometimes in surprisingly com-
plex ways (e.g., Fine, Gibbons, & Amazeen, 2013;
Marmelat & Delignières, 2012; Richardson et al.,
2007). One conclusion that may be drawn from
those findings is that individual behaviors reflect the
dynamics of the ensemble; that is, group-level con-
straints are detectable in individual behaviors. To that
end, there is growing support for the idea that indivi-
dual neural activity reflects the quality of coordination
between two people (e.g., Hasson, Ghazanfar,
Galantucci, Garrod, & Keysers, 2012; Tognoli,
Lagarde, DeGuzman, & Kelso, 2007). For example,
neural oscillations appear coupled when musicians

play the same melody (e.g., Lindenberger, Li,
Gruber, & Müller, 2009). We will expand upon this
concept in the present study by testing whether team-
level information can be extracted from the physiolo-
gical (neural) behavior of individual team members.

THE TRADITIONAL APPROACH TO
STUDYING TEAMS

For decades, researchers have studied team cognition
and team coordination using the concept of a shared
mental model (e.g., Entin & Serfaty, 1999; Rouse &
Morris, 1986; Uitdewilligen, Waller, & Pitariu, 2013).
Simply put, an individual team member builds a
hypothetical cognitive construct, a mental model,
that represents her own knowledge of the task at
hand. She uses that mental model to interpret and
organize information, make predictions about future
events, and control her own behavior. Similarities
across the mental models of team members are con-
sidered advantageous, as they allow team members to
coordinate via anticipation rather than explicit inter-
action. In the extreme case, all team members possess
the same knowledge; in the less extreme case, knowl-
edge among team members is at least complimentary
or overlapping. The team’s shared mental model is
considered to be an aggregate, or summation, of the
individual mental models (e.g., Entin & Serfaty,
1999). In that light, a common approach to training
that builds from the shared mental model perspective
is the use of cross-training (e.g., Cannon-Bowers,
Salas, Blickensderfer, & Bowers, 1998), in which
team members are trained in the positions of other
team members with the goal of developing a shared
knowledge structure.

In the shared mental model, the implication of
summation is that the behavior of any one team mem-
ber is relatively independent of the behavior of other
teammates. This assumption creates a problem of
shared variance in a nested structure, particularly if
individuals belong to multiple sub-teams. In the
example depicted in Figure 1, the same individual
may contribute to both publications and communica-
tions, but not event planning, in the brand manage-
ment unit. An alternative to the shared mental model
is a dynamical approach in which characteristics of a
team (knowledge, performance, process) emerge from
interactions among team members. Treating the inter-
actions as primary downplays the role of particular
individual traits and knowledge and highlights the
exchange of information that characterizes teams at
all levels (Cooke et al., 2013). The difference with the
shared mental model approach can be made more
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concrete through empirical demonstrations. For
instance, a comparison of the aforementioned cross-
training with “perturbation training”, in which team
members were forced to interact with each other in
unexpected ways in response to novel situations,
revealed that more adaptive teams developed with
this latter, dynamical strategy (Gorman, Cooke, &
Amazeen, 2010). We propose that shifting emphasis
to the primacy of interactions among team members
will allow us to capture the nested structure of teams
and large organizations.

A DYNAMICAL SYSTEMS APPROACH
TO NESTED TEAM COGNITION

A dynamical systems approach to team cognition
involves recognizing the fact that while individual
behavior affects team performance, teams exhibit
bidirectional influence, with individuals being con-
strained by the team’s goals and intentions just as
they contribute to them. This bidirectional influence,
called circular causality, is a hallmark characteristic of
a complex system (Haken, 1996). For the company
depicted in Figure 1, a particular subset of individuals,
perhaps those on the board of directors, have formu-
lated a mission statement for the company, but then
that mission statement acts as a constraint on even the
board of directors’ individual decisions and daily
behaviors. This circular causality occurs at all scales:
The company’s mission statement affects the activities
of the east and west divisions and all of the individual
teams nested within them. At each level, team deci-
sions affect the behavior of individuals and team beha-
vior is affected by individual behaviors and decisions.
That same structure can be applied within individuals:
Physiological processes function to support the indivi-
dual as a whole and are, in turn, constrained by the
individual’s behavior. For example, respiration and
cardiac activity are essential support systems for life
but can be affected by a stressful event experienced by
the individual. Research supports the interdependency
of whole body, cognitive, and physiological processes.
For example, decreases in heart rate variability are
associated with a stressful work environment
(Chandola, Heraclides, & Kumari, 2010), and
increases in EEG activity are associated with engage-
ment in cognitive tasks (e.g., Berka et al., 2007). In
contrast, psychologists have known that autonomic
responses, like changes in heart rate, have a profound
effect on cognitive processes ever since Yerkes and
Dodson (1908) first found that arousal produced
U-shaped performance functions in a discrimination
learning task. Contemporary researchers have found

similar results indicating that certain forms of exercise
both enhance and deteriorate cognitive performance,
depending on the intensity and duration of the exercise
(Brisswalter, Collardeau, & René, 2002).

A dynamical systems approach to team cognition
also entails recognition that the influence among team
members is an ongoing and dynamic, not static, pro-
cess. Team behavior commonly changes over time as
team members are confronted with new information
or challenges. Dynamical systems tools are designed
to capture the temporal evolution of any process, with
the main objective being to uncover temporal patterns
not readily captured from outcomes or other static
measures (e.g., mean, variance). There are a large
number of dynamical models that could be used to
describe team behavior. One dynamical method,
called attractor reconstruction, was used to character-
ize team coordination dynamics from communication
data (Gorman, Amazeen, et al., 2010). A second
dynamical measure, called the Hurst exponent, was
used to characterize long-range correlations in those
team coordination data. A more sophisticated form of
that method, called multifractal analysis, will be used
here to analyze the nested patterns of behavior inher-
ent in teams. We will provide details about multifrac-
tal analyses following an introduction to fractals
below. The same feature that poses fundamental pro-
blems to traditional analyses, which are based upon
partitioning sources of variability, is foundational to
multifractal analysis, which thrives on nested patterns
of variability.

FRACTALS AND MULTIFRACTALS

Fractals are spatial or temporal geometric structures
that have self-similar structure at multiple levels of
analysis (Mandelbrot, 1983). The concept of self-simi-
larity refers to the characteristic that the spatial or
temporal features of an object or time series, respec-
tively, observed at a small scale, resemble the features
observed at a large scale. An accessible example of
spatial self-similarity can be seen in the structure of a
tree (Figure 2a). Tracing the trunk upward from the
ground, one observes that the tree forks into two
branches; following one of those branches reveals
another fork into another two branches. One of the
assumptions that we will make in applying a fractal
analysis to teams is that hierarchical team structure
resembles this tree’s structure: in some sense, the
interaction of team members in small groups resem-
bles small group interaction within larger groups. The
same approach can be applied to time series data, with
an emphasis on timing characteristics: teams have the
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potential to demonstrate similar patterns of fluctuation
over both short and long time scales (Figure 2b). The
paradigmatic example of such fluctuations is that of
the heartbeat, in which self-similarity over time is the
defining characteristic of a healthy heart beat and
deviations from that fractal patterning are indicative
of life-threatening conditions such as cardiac arrhyth-
mia (random variation) or congestive heart failure
(periodicity) (e.g., Gieraltowski, Zebrowski, &
Baranowski, 2012; Goldberger et al., 2002; Peng
et al., 1995).

The suggestion from these studies is that fractal
properties are a general characteristic of smoothly
running systems, in which the nested physiological
and/or cognitive components interact efficiently (Van
Orden, Holden, & Turvey, 2003). Fractals have been
used to make categorical distinctions between healthy
and unhealthy people with Parkinson’s (e.g.,
Hausdorff, 2009) and Alzheimer’s (e.g., Woyshville
& Calabrese, 1994) diseases and to predict perfor-
mance patterns in perceptual tasks such as visual
search (e.g., Stephen & Anastas, 2011) and weight
estimation of a wielded object (e.g., Stephen,
Arzamarksi, & Michaels, 2010). In the present study,
we will test the hypothesis that these findings extend
beyond the individual to team performance. Gorman,
Amazeen, et al. (2010) demonstrated preliminary sup-
port for that hypothesis using one index of fractal
scaling, the Hurst exponent.

In that study, researchers recorded communication
patterns from three-member teams (pilot, navigator,
and photographer) while they performed a simulation
task involving an uninhabited air vehicle (UAV).
Some teams, called intact teams, were composed of
team members who had worked together on that task
previously, and other teams, called mixed teams, were
composed of team members who had worked on that
task before but never worked together. The research-
ers used perturbations—abrupt, momentary disrup-
tions, such as a lapse in communication—to gauge
the flexibility of each team in responding to unpre-
dictable problems. They found that mixed teams
exhibited more fractal behavior and more successful
recovery from perturbations. This finding was the
motivation for “perturbation training”, mentioned ear-
lier (Gorman, Cooke, et al., 2010). In that follow-up
study, perturbations were manipulated explicitly dur-
ing training in order to determine their role in produ-
cing a more adaptive team. In retrospect, the result
was not surprising because mixed teams relied more
heavily on ongoing interactions rather than on a
shared mental model that they may have developed
in concert with other teammates who were then
replaced.

A global analysis of fractality, such as that per-
formed by Gorman, Amazeen, et al. (2010), reveals
whether a team is, like the heart rate of a healthy
individual (e.g., Peng et al., 1995), a smoothly

Figure 2. (a) A picture of a tree demonstrating the fractal property of self-similarity. (b) A sample entropy time series. Magnifying one portion
of the top time series reveals another very similar time series and represents the concept of statistical self-affinity, i.e., the time series looks the
same at large scales as it does at small scales. (c) A picture of the vein structure found in a leaf. This illustrates the concept of multifractality—
the fractal structure of the leaf differs from that of the tree, despite being part of the same structure.
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operating, functional system (Kello, Beltz, Holden, &
Van Orden, 2007; Van Orden et al., 2003). In nature,
however, it is rare to observe a monofractal system, in
which the same scaling features are evident at all
levels of analysis. The tree in Figure 2a can be used
to illustrate this concept: although both the branches
and veins that run through the leaves of the tree are
both fractal, they differ structurally (Figure 2c). We
expect that human systems, which demonstrate tre-
mendous complexity, are more like the tree than the
(mono-)fractality that has been reported repeatedly in
the literature (Van Orden et al., 2003; Wagenmakers,
Farrell, & Ratcliff, 2004). Humans and human teams
are far more likely to exhibit different fractal patterns
at different levels of analysis (from neural to social)
rather than a single pattern across all scales.
Multifractal indices relax the assumption of self-simi-
larity but also make it possible to detect scaling dif-
ferences across levels of analysis. Using terminology
employed by others in this field (e.g., Ihlen, 2012;
Ihlen & Vereijken, 2010), the distinction between
monofractal and multifractal processes reflects the
difference between time-independent and time-
dependent processes, respectively. We expect that the
self-similar characteristic of (multi-)fractal systems
will allow us to observe characteristics of team beha-
vior in processes both smaller than and larger than the
team. In the current study, we will focus on demon-
strating the feasibility of this approach using the brain
activity of individual team members to reveal team-
level processes.

CURRENT STUDY

In the current study, we will use multifractal analysis to
extract team-level behavior from brain activity signals
of individual team members. We expect changes in
scaling features, across levels of analysis, to correspond
to regions of organization that characterize important
team experiences, including both the performance of
routine tasks and responses to (unexpected) perturba-
tions. Data were taken from a larger study of team
neurodynamics (Stevens, Galloway, Wang, & Berka,
2012, Stevens, Galloway, et al., 2013) involving EEG
synchronization data generated by Submarine Piloting
and Navigation (SPAN) trainees at the Naval Training
Academy in Groton, Connecticut. The data were ideal
for our purposes because of the presence of hierarchies
in both team structure and routine procedures. The
training team and its members were constrained by
the rules and procedures of the US Navy and, more

specifically, the training protocols of the Submarine
Learning Center. The training exercise itself was
divided into three distinct events called Briefing,
Scenario, and Debriefing. Even within those major
events were arranged other, smaller and rhythmically
occurring events, such as the “taking of Rounds”
(described in Method) during the Scenario.
Furthermore, significant changes in the team’s neuro-
physiology and speech patterns have been reported at
the junctions between these major training segments
(Stevens et al., 2012). We therefore expected changes
in scaling features across levels of analysis to corre-
spond to regions of neurophysiologic organization that
characterize important team experiences, including both
the performance of routine tasks and responses to
(unexpected) perturbations.

METHOD

In this study, we analyzed data from a single team for
the purposes of illustrating how team-level behavior
may be captured through rigorous examination of
temporal characteristics observed at the level of the
individual. Although the EEG data that we collected
required little post processing prior to implementation
of our multifractal analysis, generation of the audio
transcripts against which we compared our output was
time and labor-intensive, restricting the data sets avail-
able. Therefore, the focus of this paper is to demon-
strate the feasibility and utility of our approach.

A brief description of the data collection/manipula-
tion methodology is presented here, but a full descrip-
tion of the data appears in Stevens et al. (2012).

Participants

Analyzed data were collected from one SPAN team
that was composed of six male trainees who occupied
the positions of Navigator, Assistant Navigator,
Contact Manager, Quartermaster of Watch, Radar,
and Officer of the Deck. The team had worked
together on one prior simulation exercise, but all mem-
bers were experienced submarine personnel taking part
in a 6 month training program that readies them for
promotion. The analyzed team was representative of all
teams that were tested, and there was a complete audio
transcript along with instructor comments and assess-
ments of stressful events. With a complete data set for
that one team, variation over time could be linked to
specific events experienced by the team.
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Task

Each SPAN session is a high-fidelity simulation com-
posed of three distinct sections: Briefing; Scenario; and
Debriefing. During the Briefing, trainees learned about
the objectives of the mission and other factors relevant
to task performance (e.g., weather, ship traffic). During
the Scenario, trainees engaged in the regular mission
and encountered a number of unforeseen events that
forced the team to reorganize their activities. For exam-
ple, a loss of visibility due to fog forced the team to
consult other navigation equipment in order to deter-
mine the ship’s positions. Other perturbations were
equipment malfunctions or reports of a man overboard.
A significant rhythmic feature of the Scenario was the
“taking of Rounds”, in which teams regularly reported
on the ship’s position in a structured manner every 3
minutes. The team members discussed various aspects
of the Scenario during the final section, the Debriefing.
The Debriefing section was highly structured, with team
members reporting in turn.

EEG data collection and transformation

The main challenge of analyzing the synchronization
of EEG signals from multiple individuals was to

condense the signals into a single time series that
preserves significant features. Gorman, Amazeen,
et al. (2010) solved that problem by creating a coor-
dination parameter that captured the essential interac-
tions between three team members and revealed key
differences in performance between teams that were
not evident in traditional summary statistics.

In the current study, the raw data were 54 data
streams—nine EEG leads from each of six team mem-
bers. Simple summation would effectively cancel out
the variability, leaving no information about changes
in behavior. Stevens and colleagues (Stevens et al.,
2012; Stevens, Gorman, Amazeen, Likens, &
Galloway, 2013) approached the challenge of conden-
sing EEG data by first deriving temporal estimates of
engagement, a measure of attention to the task at hand
for individual SPAN team members. Estimates of
EEG-derived Engagement (EEG-E) were generated
using the B-Alert® EEG system, and are based on
individual EEG activity, primarily in the range of
1–40 Hz (Berka et al., 2007). They merged the indi-
vidual engagement series into one time series using an
artificial neural network model that classified the col-
lective activity of the teams as one of 25 neurody-
namic symbolic patterns of engagement (NS_E),
essentially ordering them from least activity across
all team members to greatest activity. Figures 3a and

Figure 3. An artificial neural network was used to identify 25 characteristic patterns of engagement across six team members. Those
engagement categories were essentially ordered from least activity (pattern 1) to greatest activity (pattern 25) across team members. (a) A
generic depiction of one engagement category that depicts engagement level for the six team members. (b) Activity of the six team members
across all 25 team engagement categories at one point in time. (c) Transition matrix with a small amount of clustering, mostly on the diagonal.
(d) Transition matrix with a large amount of clustering that is widely distributed across the plot.
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3b depict the classification procedure, showing the
engagement level for each of the six team members
at a particular moment in time for a sample pattern
(Figure 3a) and the 25 classified patterns (Figure 3b).
Changes in activity over time were tracked using a
transition matrix (Figures 3c and 3d), with Patterns 1–
25 plotted along the horizontal axis at time t and
plotted along the vertical axis at time t + 1. The
distribution of activity in the transition matrix indi-
cated the distribution of patterns over time, with well-
defined clusters indicating persistence of certain pat-
terns (along the diagonal) or transition pathways (off
the diagonal) and greater homogeneity (Figure 3d)
indicating widespread use of patterns and transition
pathways over time.

We quantified the distribution of activity over time
by calculating the Shannon (1951) entropy in sliding,
100-second windows or epochs.1 That resulted in a
time series of 4243 observations from a training ses-
sion that lasted about 1.3 hours (Figure 4a). The
classic use of Shannon entropy was to quantify the
amount of disorder in a system in terms of the bits of
information needed to fully describe that system. Low
entropy indicates a highly ordered system (Figure 3c,
well-defined clusters in the transition matrix), and
high entropy means that the system is less ordered

(Figure 3d, greater homogeneity in the transition
matrix). Shannon entropy has also been used to quan-
tify the distribution of activity in state space grids
derived from peer interactions (e.g., Dishion, Nelson,
Winter, & Bullock, 2004; Hollenstein, 2007), where
conversion from symbolic to ratio data is desired for
further analyses. In the context of our data, low
entropy suggests that the team is highly organized
(rigid, in the extreme) and high entropy suggests that
the team is randomly organized or transitioning, per-
haps due to lack of task structure or the occurrence of
a recent perturbation toward which a team-level
response has not yet taken place. Low and high
entropy states were observed in less and more experi-
enced teams, respectively, in Stevens (2012).

Time series analysis

There are many detailed accounts of fractal analysis in
the literature (e.g., Eke, Herman, Kocsis, & Kozak,
2002), and so we will refrain from providing a full
account of the various techniques. However, as an aid
to interpreting the results, we orient the reader to
common fractal indices called scaling exponents.
Mandelbrot (1983) introduced the notion of a scaling
exponent to describe self-similarity in natural phe-
nomena. The Hurst exponent, H, which is commonly
used in a number of scientific fields, provides an
estimate of correlation over time scales (Beran,
1994; Eke et al., 2002). Figure 5 depicts the standard
interpretation of H along its entire range, 0 to 1. The
midpoint, H = 0.5, is indicative of a random process
in which data points are uncorrelated with each other.

Figure 4. (a) A sample NS_E entropy time series. (b) The CWT of
the series depicted in (a). Nesting patterns can be clearly observed
viewing the CWT from top to bottom.

Figure 5. Hurst and Hölder exponents along with interpretative
ranges. Diagonal connecting lines represent the relationship,
h = H – 1, between the Hurst and Hölder exponents.

1 The 100-second window preserved critical characteristics of the
time series. Windows larger than 100-seconds decreased the resolution
of entropy changes, and substantially smaller windows (e.g., 30 sec-
onds) introduced meaningless fluctuations. For these categorical data,
entropy ranged in value from log2 (1) = 0 to log2 (25) ~ 4.64.
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The lower half of the range, 0 < H < 0.5, identifies an
antipersistent (negatively correlated) process that is
often interpreted as corrective behavior (e.g., in
teams, Gorman, Amazeen, et al., 2010; to maintain
upright posture, Collins & Deluca, 1993). The upper
half of the range, 0.5 < H < 1, identifies a persistent
(positively correlated) process thought to be a sign of
exploration (Collins & Deluca, 1993; Riley, Wong,
Mitra, & Turvey, 1997; Treffner & Kelso, 1999;
Stephen, Arzamarski, & Michaels, 2011). Gorman
et al. (2013) interpreted the finding of H > 0.5 for
the most adaptive teams as a team-level exploration of
solutions to unexpected problems.

Technically, the Hurst exponent, H, should only be
used to characterize processes whose variance char-
acteristics remain stable over time. We used multi-
fractal analysis in the present study because we
expected that variance characteristics might change
over time. For that reason, we used the localized
scaling exponent, the Hölder exponent, h, which is
related to H by the following equation: h = H – 1
(Scafetta, Griffin, & West, 2003). Figure 5 depicts
both H, along its range from 0 to 1, and h, along its
range from −1.0 to 2.0. Note that h exists beyond the
range of both H and the values given by the conver-
sion equation. Figure 5 provides the standard inter-
pretation of h and the categorical relation to the more
commonly used H.

Multifractal analysis is a generic term for a set of
techniques that all serve to characterize how fractality
changes across the levels of analysis in a time series
(Ihlen, 2012). Time-based methods, such as multifrac-
tal detrended fluctuation analysis (MFDFA), are
excellent for characterizing the (multi-)fractal charac-
teristics of a time series, but the potential for applica-
tion is limited due to an inability of that method to
localize variation in scaling with respect to time.
Wavelet transform modulus maxima (WTMM) pro-
vides an estimate of variability in the form of time-
localized estimates of fractal scaling (Muzy, Bacry, &
Arneodo, 1993; Struzik, 2001). That property made it
a good choice for locating team responses with respect
to important events in time. In this section, we present
a summary of WTMM but refer interested readers to
more detailed treatments (e.g., Mallat, 1999; Percival
& Walden, 2000).

The first step of the WTMM analysis is to perform a
continuous wavelet transform (CWT) of the time series.
The CWT detects the similarity between the time series
and small, finite waveforms called analyzing wavelets
(syn. wavelets or wavelet filters). The choice of an
analyzing wavelet is nontrivial and should be based
on the characteristics of the time series. We used the
second derivative of the Gaussian function Figures 6a–

c, dark curve) as the analyzing wavelet because its
symmetric properties are ideal for signals that possess
sharp peaks and step-like properties called singularities
(Ashenfelter, Boker, Waddell, & Vitanov, 2009; Muzy
et al., 1993; Scafetta et al., 2003), as observed in our
entropy time series. Once selected, the analyzing wave-
let is compared to a large region of the time series (e.g.,
one-fourth the length of the series, as depicted in
Figure 6a), and a measure of correlation called the
wavelet coefficient is computed. The window of com-
parison is shifted by one time-step until correlations are
computed for the length of the time series using that
large comparison window. The process is repeated at all
scales (Figures 6b and 6c) as the width of the wavelet
and the analyzing window are decreased by an integer
amount until the width of the analyzing wavelet accom-
modates only two or three data points.

We will discuss additional details of the analysis
where relevant in the Results section: (1) the time by
scale graph of the time series (Figure 4b) is useful for
identifying nested structure visually; (2) the multifractal
spectrum (Figures 7a and 7b) quantifies the local fractal
scaling exponent, with a greater range in the spectrum
indicative of multifractality; and (3) the time series of
local exponents (Figure 7b) demonstrates change over
time and can be compared to audio transcripts to inter-
pret team reactions to important events.

RESULTS

Multifractal analysis generates both graphical and
quantitative outputs. To report our results, we will

Figure 6. A depiction of the CWT algorithm. Three scale levels
are illustrated. The wavelet is compared to a section of the time
series before being translated and being compared to other sections
of the time series. The scale is decreased and the comparing–
translating procedure continues.
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describe the graphical output and then provide rele-
vant quantitative support for graphical interpretations.
As an example, Figure 4a depicts a time series of
NS_E entropy (M = 4.07, SD = 0.23) for the target
SPAN team. Notice that entropy varied considerably
from one epoch to the next, sometimes generating
sharp peaks or step-like changes. Some changes in
the waveform extend over a long period of time,
such as the arc-shaped trend that spans from approxi-
mately Epoch 200 to 1500. Other, more rapid,
changes are nested within those slower oscillations
and give the waveform its “noisy” appearance. That
high degree of variation is expected from the dynamic
nature of SPAN training sessions and is a prototypical
example of the type of time series one might expect to
exhibit fractal or multifractal behavior. Monofractal
detrended fluctuation analysis (DFA) supported the
intuition that the time series was fractal, H ≈ 1.01
(Peng et al., 1994). Therefore, even though the start-
ing point for this analysis was individual NS_E, ana-
lysis of NS_E entropy indicates that global behavior
of the team was persistent/exploratory.

Graphical interpretation

Figure 4b depicts the output of the CWT of the time
series, a scale (vertical axis) over time (horizontal
axis) plot that shows the relative magnitude of wavelet
coefficients. Given the gray scale shading scheme

chosen here, bright spots in Figure 4b indicate a
high degree of similarity (i.e., correlation) between
the analyzing wavelet and the time series.
Contiguous bright regions reflect similar patterns of
entropy fluctuation that persist across scale and time.
We believe that those regions characterize significant
events. Darker regions represent a lack of similarity
and also serve to delineate the correlated regions, that
is, to identify transitions between significant events.

Closer examination of Figure 4b reveals several
important features: Most notable are the multiple
branching patterns that indicate nesting. Notice that
the bright region at the largest scale (around Epoch
1500, log2scale = 11) branches into two smaller
regions that continue to branch at ever smaller scales.
The fact that the branching bright regions are con-
nected in the vertical direction implies that rapid
changes (at the smaller scale) exist concurrently with
and are nested within slower changes (at the larger
scale). That branching feature is indicative of a fractal
system. However, because the same pattern does not
persist across all scales, the fractality appears to be
scale-dependent or multifractal.

It is also notable that multiple bright regions exist
at the largest scale; that is, even in the most abstract
sense, team behavior changes over the course of the
experimental session. A dark line in the vicinity of
Epoch 2800 delineates two regions of organization at
the largest scale that are nevertheless segregated all of
the way down to the smallest scales. Comparison with

Figure 7. (a) A histogram of local fractal scaling exponents. The distribution represents a broad range of exponents indicative of both
antipersistent and persistent behavior, as expected when a series is multifractal. (b) Fractal scaling exponents plotted over time (epoch). This
figure illustrates how scaling exponents change over time and in response to important team events. Gray bands indicate when the team is
engaged in corrective or antipersitent behavior. White bands indicate when the team is engaged in exploratory or persistent behavior. Vertical
dashed lines demarcate when the team experienced a high amount of stress.
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the session transcripts indicates that this time corre-
sponded to an event change that was experienced by
the team: the shift from Scenario to Debriefing. We
can use the same process to identify and interpret
regions of organization at other levels of analysis. A
rhythmic event, apparent from alternating bands of
light and dark, persists across nearly the entire graph
at approximately log2scale = 6. Comparison with the
audio transcripts indicated that this nearly-periodic
structure corresponded with the taking of Rounds,
which was highly regimented but not quite the same
from one instance to the next.

Perhaps the most promising feature of multifractal
analysis is its use not in monitoring routine events but in
identifying unplanned, surprising events. Note in Figure
4b the existence of a bright, delineated region centered
near Epoch 1500 and log2scale = 8. That region is
located within the Session but is clearly separated and
appears to disrupt events at multiple levels of analysis,
including the periodic taking of Rounds. Comparison to
audio transcripts indicates that the team experienced a
considerable amount of stress resulting from reduced
visibility. The situation was further complicated by a
communication breakdown and confusion over the
course correction needed to avoid a vessel in the near
vicinity. We explore all of these graphical features quan-
titatively in the next section.

Quantitative results

We identified the likelihood of multifractal scaling in
the NS_E data stream using the CWT graphical output
of Figure 4b. Quantitative analysis of the multifractal
spectrum further supports that claim. A histogram of
the local scaling exponents is depicted in Figure 7a.
As expected, local scaling exponents were sufficiently
varied to constitute a broad spectrum typical of multi-
fractal processes. In the mean (M = 0.60; SD = 0.42),
the team’s behavior was exploratory (see Figure 5), no
doubt based on their experience of problem-solving
during the Scenario. That finding is in agreement with
the DFA-calculated global Hurst exponent that was
reported earlier. However, the histogram identifies
that behavior crossed both the corrective and explora-
tory ranges, justifying the need for a more fine-
grained analysis to characterize the team’s behavior.

A plot of h over time (Figure 7b) supports that
observation: h clearly changes over time, particularly
near important mission events. We used a number count
to identify that the value of h changed 23 times over the
course of the experimental session. Dashed vertical lines
highlight one region of organization that we identified
earlier (near Epoch 1500). The change in h near Epoch

1300 marks the beginning of that region and corre-
sponds with a shift toward random behavior
(h = 0.54). As the team navigated the submarine near
a contact in the fog, activity heightened, and team
behavior—as measured by NS_E entropy—became
more exploratory/persistent, as marked by the increase
in h from the random range (h = 0.54) to a local
maximum at h = 0.92. In words, team exploratory
behavior increased throughout the event until the team
resolved the situation, at which time, the team oscillated
between exploratory and corrective patterns for the
remainder of the scenario.

A second event of interest noted earlier was
the transition between Scenario and Debriefing. In
Figure 7b, point 17 corresponds to the dividing line
(near Epoch 2800) on the CWT graph (Figure 4b).
The localized exponent (h = 0.33) at that point iden-
tifies a corrective pattern of behavior, as may be
expected during a change in task. In fact, corrective
behavior appears to have played a more dominant role
during the Debriefing section as 42% of scaling expo-
nents were corrective during the Debriefing compared
to 23% during the Scenario.

A third event that was readily identified in Figure
4b was the taking of Rounds. Transcript data shows
that the Rounds occurred roughly every 3 minutes
(180 Epochs). That corresponds with the average
interval (M = 175.93; SD = 61.05 Epochs) between
changes in h, identified in Figure 7b as the space
between adjacent numbered points.

Surrogate analysis

The final step in our analysis is a surrogate analysis
that provides a test of the null hypothesis that the
observed multifractal structure is spurious, arising
from a process that is monofractal or random rather
than multifractal (Ihlen, 2012; Ihlen & Vereijken,
2010). In the current context, the most appropriate
surrogate test is a comparison of the multifractal spec-
trum width, hmax – hmin, of the observed series with
the confidence interval of an average surrogate spec-
trum derived from many shuffled time series.
Following Ihlen and Vereijken (2010), we used an
iterated amplitude-adjusted Fourier transform that
maintains any monofractal characteristics while elim-
inating interscale interactions. Multifractal analysis of
100 surrogate time series revealed spectrum estimates
for the shuffled series with the following characteris-
tics: M = 1.55; SD = 0.29; 95% CI = [1.49, 1.61]. The
spectrum width of the intact series (1.67) exceeds the
upper limit of the 95% confidence interval of the
shuffled average. On the basis of this surrogate test,
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we can conclude that the results represent a time-
dependent intermittent process.

DISCUSSION

Across a large variety of behavior settings, teams are
likely to exhibit hierarchical structure, whether it is as
complex as the organizational chart depicted in Figure
1 or as simple as a team of individuals assembled to
accomplish a single goal. In this study, we analyzed a
team whose structure was between those two
extremes, a naval training team whose behavior was
constrained from above by the rules and procedures of
the US Navy and the Submarine Learning Center and
was influenced from below by the physiological fluc-
tuations and cognitive decisions of individual team
members. A novel aspect of our analysis was the
decision to analyze team behavior via the brain activ-
ity of individual team members. We discovered that
significant events experienced by the team could be
extracted from EEG patterns collected at the level of
individual neurophysiology, a method that was suc-
cessful, in large part, due to the complex, interactive,
nested quality of the team’s structure and behavior.
We believe that this study was the first to analyze
simultaneously multiple levels of analysis from neural
activity to team activity and from momentary events
to whole experimental sections.

The finding that team-level experiences could be
identified from the neural recordings taken from indi-
vidual team members is both novel and promising.
Over the past two decades, reports of fractal processes
in physiological (e.g., Goldberger et al., 2002) and
cognitive (e.g., Van Orden et al., 2003) systems have
been used to support the notion of the human body as
a system of vastly interconnected and interacting sub-
systems. A logical evolution of that thought process
follows from the extension of interperson coordination
dynamics to the level of dyads. Relative phase
dynamics, such as those described in the introduction,
were first studied at the intraperson level (Amazeen,
Amazeen, & Turvey, 1998; Amazeen, Schmidt, &
Turvey, 1995; Kelso, 1984) before being extended to
the interperson level (Richardson et al., 2007; Schmidt
et al., 1990). Similarly, (mono-)fractal scaling first
observed at the level of the individual has, in two
recent studies, been demonstrated across individuals
(Gorman, Amazeen, et al., 2010; Marmelat &
Delignières, 2012). We have expanded on those find-
ings by exploring how those fractal patterns changed
across time and levels of analysis. Just as a single
exponent did not adequately describe response times
in individuals (Ihlen & Vereijken, 2010), a single

scaling exponent did not capture fully the team beha-
vior we analyzed. Instead, a range of scaling expo-
nents was needed, and the scaling exponents that
made up that range co-occurred with meaningful
team-level events. Surrogate analysis was used to
verify that the series was multifractal rather than
monofractal or random (see Ihlen & Vereijken, 2010).

Our contention is that the current findings support
the conception of teams as highly interconnected,
dynamical systems. Given that fractal and multifractal
properties are recognized as markers of health in
physiological systems (e.g., Peng et al., 1995), those
same properties may also be useful in assessing the
general “health” of a team (i.e., its adaptability and
responsiveness to the changing environment). Fractal
patterning in an electrocardiogram is used as an indi-
cator of overall bodily health. Deviations from fractal
in either direction indicate serious health problems:
cardiac arrhythmia if the patterning is random and
congestive heart failure if the patterning is periodic
(Peng et al., 1995). Within the team domain, Gorman
et al. (2010) showed that the teams best able to
recover from perturbations were those teams that
exhibited self-similarity in communication patterns,
albeit at a single, global scale of analysis. More
recently in the physiological domain, researchers
have found that multifractal properties also distinguish
between healthy and unhealthy heart behavior (Ivanov
et al., 2001). The current findings—and those earlier
mono- and multifractal findings—suggest that multi-
fractal measures may also provide team coordination
researchers with important diagnostic information.
Our future interest is in understanding how fractal
properties characterize team health, not just at the
global level but also on a moment-by-moment basis
and without the need to reference session transcripts.
Such research might reveal reliable changes in fractal
properties that are associated with healthy and
unhealthy team behaviors.

We readily acknowledge that a current point of
contention in the literature is whether the occurrence
of fractal patterning indicates a smoothly running, func-
tionally healthy system (e.g., Peng et al., 1995; Van
Orden et al., 2003; see criticisms in Wagenmakers
et al., 2004). Fractal patterning in reaction time data
has been interpreted as a system whose cognitive,
motor, respiratory, and cardiac components are func-
tioning in concert with the intention of the experimental
participant to respond as quickly as possible (Van
Orden et al., 2003). Other researchers point to an over-
reliance in the literature on more primitive methods for
determining fractality and a disconnect between data
analysis techniques and the psychological phenomena
of interest (e.g., Wagenmakers et al., 2004). Certainly,
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monofractal methods set up an all-or-nothing scenario
that is difficult to overcome. Greater promise comes
from multifractal methods that allow for identification
of regions of organization that correspond to the team’s
psychological experiences and observable behaviors in
complex and realistic environments like those required
by SPAN training.

We believe that an additional limitation of previous
studies has been the reliance on logical argument to
explain the impact on the entire system of an effect
that is only observed, measured, and analyzed at one
level (e.g., heart rate). With the method used here, we
were able to measure at one level—the level of brain
activity (cortical regions, to be specific)—and watch
the dynamics emerge at the level of social interaction.
The output of our multifractal analysis (see Figure 4b)
highlighted significant events at multiple levels of
analysis simultaneously. Infrequent changes, such as
the transition between the Scenario and Debriefing,
were identified in the same analysis as frequent, rhyth-
mic events, such as the taking of Rounds. We were
also able to detect disruptions to the team’s behavior
(e.g., team confusion at Epoch 1500). That simulta-
neous, multi-level analysis would not have been pos-
sible with monofractal analysis of any type of data
due to the assumption of a single scaling region at all
levels of analysis and across time. The success of this
multifractal tool in identifying multiple scaling
regions suggests that other phenomena, previously
thought of as fractal, may also be found to be more
complex when submitted to a multifractal analysis.

Application of multifractal methods

The concepts and tools that we have used in this study
appear to be a promising combination for exploring
the idea that individual physiology reflects the elusive
quality of nestedness in teams. Still, many questions
remain regarding the utility of our approach as a
general method for studying team performance. Our
first goal will be to demonstrate this finding in other
teams in the same data set and then to test for general-
izability across teams of different sizes in different
contexts and with different types of data. We will
build upon the findings of fractality in both interper-
son motor coordination (Marmelat & Delignières,
2012) and team communication (Gorman, Amazeen,
et al., 2010) to investigate time- and level-sensitive
phenomena. Even for researchers who are not inter-
ested in team or social processes, we argue that multi-
fractal analysis is a way to see more macroscopic
details of systems that are often measured more
microscopically. The use of EEG and other brain

imaging techniques has become more popular in the
social sciences (Uttal, 2001). An ongoing challenge is
to relate neural-level phenomena to behavioral experi-
ences and cognitive reports (Gonzales-Castillo et al.,
2012). Multifractal analysis gives us an additional tool
by which to identify events of interest to social scien-
tists from the brain imaging data that they collect.

There are numerous applications for multifractal
techniques in both research—where a particular
manipulation might be implemented in response to a
change in the team’s coordination dynamic—and in
real-world settings, including both educational train-
ing settings and business or military scenarios. One
distinct advantage that our method has over current
monitoring methods is the multi-level aspect of the
analysis. While humans can detect the nested quality
of an event—a conversation, for example, that is
centered on a topic but is characterized by information
exchange, punctuated by tangential mini-conversa-
tions—it is far more difficult to write a machine algo-
rithm that can simultaneously detect all of those
details. With multifractal analysis, the promise is that
we can see simultaneously multiple events occurring
at multiple levels of analysis and respond accordingly.

Recent successes in combining time series analysis
techniques with statistical techniques, such as vector
error correction modeling (e.g., Stephen, Anastas, &
Dixon, 2012), suggest that it may be possible to study
when, how fast, and to what extent perturbations
experienced at one level diffuse to other levels of
analysis. For example, a medical emergency experi-
enced by one individual could lead to either a momen-
tary disruption of the team or overall system collapse,
depending on how that perturbation is absorbed by the
system. The same argument occurs in the opposite
direction: a change in company directive has the
potential to either change the behavior of all indivi-
duals in the company (for better or worse), or it may
not even be perceived by individuals at the lower
levels of the organization, again, depending on how
information ripples through the system.

A significant aspect of these analyses is the poten-
tial for real-time implementation. The time required to
execute our entire process, from data collection of
individual EEG to identification of significant team
events, required a small fraction of the time required
to transcribe audio recordings and release them (parti-
cularly for classified data). Real-time information
about team health would make possible interventions
that can alter the course of behavior, possibly in
advance of lengthy adverse events. Eventually, mon-
itoring personnel may be able to detect perturbations
on the fly as well as the level of analysis at which the
perturbation occurred and the contagion of that
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perturbation to other levels. Although we currently
rely on transcripts to interpret the significance of the
events that we have identified, the fact that we can
identify events analytically in a matter of seconds
means that we can determine in (essentially) real
time that significant events have occurred and, if
necessary, formulate a timely intervention or response.

From description to prediction

The application of our method to real-time situations is
tantamount to transitioning from a descriptive analysis
to a predictive one. That transition requires the ability to
detect if and when a meaningful change occurs in the
scaling exponent. A similar problem was explored in
Gorman, Hessler, Amazeen, Cooke, and Shope (2012),
who investigated real-time changes in Lyapunov expo-
nents (a measure of stability) in team communication
patterns as indicators of perturbations. The solution they
presented was the establishment of a baseline measure
of the team’s communication dynamics using an initial
data sample to estimate mean parameter values and
confidence intervals. Significant change in team beha-
vior was evidenced when Lyapunov exponents, calcu-
lated in real time, exceeded the confidence interval. A
similar method could be explored with the present
analysis using a pointwise estimate of scaling behavior,
similar to the one discussed in Robertson, Farrar, and
Sohn (2003), to calculate average scaling exponents and
confidence intervals. Scaling exponent values that sub-
sequently exceed the confidence interval could be inter-
preted as a reliable change in team dynamics with only
5% error. This procedure assumes sufficient stationarity
in team behavior, but baseline values could be updated
for nonstationary data sets. Using this procedure, either
in real time or after data collection has occurred, allows
for a principled approach to the prediction of changes in
team dynamics. Interestingly, researchers from engi-
neering fields have considered several ways of classify-
ing the mechanical condition of tools from pointwise
scaling estimates (e.g., Zhu, Wong, & Hong, 2009), but
those methods have not yet been evaluated for applica-
tion to human behavior. For our specific purposes,
developing those methods would aid in real-time imple-
mentation and potentially obviate the need for post hoc
comparison of EEG and transcript data.

CONCLUSION

The already prevalent and ever-increasing role of
teamwork in organizational settings demands new
and better techniques for capturing and characterizing

team behavior. Team research may have been hin-
dered by the fact that traditional analysis techniques
and concepts that build from the shared mental model
are at odds with the nested character of team perfor-
mance. The problem of nestedness in teams may be
resolved by adopting a dynamical systems approach
in the study of team behavior. Theoretical concepts,
such as circular causality (Haken, 1996) and self-
similarity (Mandelbrot, 1983), are inherent in that
approach and make possible the conception of teams
as complex systems whose component interactions
span many levels of analysis. A further implication
is that probing any one of those levels should reveal
valuable information about levels both smaller and
larger than the level of observation. Our application
of multifractal analysis to individual physiological
data shows that variation in multifractal properties is
associated with the organizational behavior of teams.
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