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During Marksmanship
. Training |

his article explores the psycho-
physiological metrics during ex-
pert and novice performances in
marksmanship, combat deadly
force judgment and decision
making (DFJDM), and interac-
tions of teams. Electroencephalography
(EEG) and electrocardiography (ECG) are
used to characterize the psychophysiological
profiles within all categories. Closed-loop bio-
feedback was administered to accelerate learn-
ing during marksmanship training in which the
results show a difference in groups that received
feedback compared with the control. During known
distance marksmanship and DFJDM scenarios, experts
show superior ability to control physiology to meet the de-
mands of the task. Expertise in teaming scenarios is character-
ized by higher levels of cohesiveness than those seen in novices.
Learning a novel task generally relies heavily on the conventional ‘
classroom instruction with qualitative assessment and observation. Integra- ©BRAND X PICTURES
tion of neuroscience-based evaluation and training techniques could significantly
accelerate skill acquisition and provide quantitative and objective evidences of successful train-
ing. In a project supported by Defense Advanced Research Projects Agency’s (DARPA) Accelerated Learning
program, EEG (brain’s electrical activity) and ECG (heart’s electrical activity) techniques were used to assess
expertise in marksmanship, combat DFJDM, and team neurodynamics.
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Learning a novel
task generally
relies heavily

on conventional

Accelerated Marksmanship
Skill Learning

Marksmanship skill acquisition was accel-
erated by first modeling the psychophysio-
logical characteristics of expertise and then
developing sensor-based feedback to accel-
erate novice-to-expert transition. A preshot
peak performance profile was identified in ex-
pert marksmen, characterized by an increase in
theta and alpha power (derived from EEG) and

a decrease in heart rate in the seconds leading up

to a shot [1].

A recent study incorporated a novel device
called the adaptive peak performance trainer (APPT) into
a marksmanship training protocol with novice partici-

pants. The APPT provided real-time feedback of heart rate
and EEG alpha power to the trainee. A haptic motor clipped
to the collar vibrated in sync with the trainee’s heart beat and
stopped vibrating when alpha power was sufficiently elevat-
ed. The goal of the APPT was to indicate to the trainee when
he is in the ideal state to fire the weapon. All participants
completed eight trials of five shots each in a simulated indoor
shooting range. The training protocol incorporated video-
based coaching on the fundamentals of marksmanship by
a qualified marksmanship coach. An instrumented weapon

was developed using off-the-shelf sensing components and
a demilitarized M16/A2 housing a pneumatic recoil system
designed to approximate the weight, noise, and action of a
real live fire weapon. Shots were directed against a scaled
projection of a circular target simulating a 20-in diameter
target at 200 yd. Marksmanship performance was measured
as the average dispersion of five shots from the shot group
center (inches), where lower dispersion represents a tighter
shot grouping and better performance. Performance trajecto-
ries of novices trained with the APPT (n = 37) were 2.3 times
greater than those of novices trained with an identical pro-
tocol without the APPT (n = 17) [1] (Figure 1). A one-way
ANOVA revealed a control versus APPT difference in both
final trials, F (1,51) = 6.65, P < 0.05, and percent improve-
ment, F (1,52) = 5.34, P<0.05.

classroom instruction
with qualitative
assessment and
observation.

Combat DFIDM
The decision of when to use deadly force is a complex skill
to assess and train. Split-second life-or-death decisions re-
quire a delicate balance between restraint and aggression.
The psychophysiology of DFJDM was evaluated using real-
istic video-based simulations to fully engage participants.
Twelve experts (infantry with urban combat experience and
police with =5 years patrol in active areas) and 12 novices
(civilians with no military or police experience) participated
in the study. All participants engaged in 24 DFEJDM scenarios
(approximately 70% justifying the use of deadly force). Sce-
narios were filmed using professional actors and represented
characteristics of the most common deadly force situations
encountered by law enforcement. When participants per-
ceived a threat requiring deadly force, they responded by fir-
ing a simulated Glock 17 with a laser barrel insert. Between
scenarios, participants were given a short rest (~2 min) to
recover from the previous scenario and prepare for the next
scenario. Participants were given a long rest (~40 min) af-
ter every three scenarios. EEG and ECG were measured
throughout the day-long session (Figure 2).

Experts had significantly lower low-frequency heart rate
variability (LF HRV) than novices during the scenarios [t (22)
= -2.79, P < 0.05]. Lower LF HRV indicates less influence by
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FIGURE1 The performance trajectory for the APPT group is
2.3 times greater than the control group.

JANUARY/FEBRUARY 2012 v IEEE PULSE 61



The psychophysiology
of DFJDM was
evaluated using
realistic video-based
simulations to fully
engage participants.

the sympathetic nervous sys-
tem, suggesting a lower state
of stress [2]. Using a two-
way ANOVA (group X task
demands), experts showed
greater suppression of right
parietal EEG alpha power (8-
12 Hz) during scenarios rela-
tive to rest periods, F(3,44) =
3.84, P < 0.05. Task-related
alpha suppression is associ-
ated with increased attention
demands, specifically, in-
creased alertness and expec-
tancy [3]. A greater change in
alpha power between resting
and scenario most likely in-
dicates that experts are more
efficient at matching their psychophysiological state (e.g., state
of alertness) to task demands (scenario versus rest).

State University.)

Team Neurodynamics

Our goal for modeling team neurodynamics is to rapidly de-
termine the functional status of a team to assess the quality
of performance and decision with the potential to adaptive-
ly rearrange the team or task components to better optimize
teamwork. Neurophysiologic synchronies (NS) are low-level
data streams that combine individual team members” EEG-
based measures of engagement into an aggregated profile
of team engagement. The metric of EEG engagement from
which these team patterns are derived is related to informa-
tion gathering, visual scanning, sensory load, and sustained
attention [4]. Team engagement NS are normalized and pat-
tern classified by self-organizing artificial neural networks.
The temporal expression of these patterns can be mapped
to team events such as the frequency of team conversation.
Team NS metrics can be collected and analyzed in near real
time and realistic training settings such as submarine pilot-
ing and navigation, high-school team problem solving, or
antisubmarine warfare tactical training. The team NS met-
rics that are expressed during team performance have been
proven to provide insight into the dynamics of the team. For
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FIGURE2 The DFJDM scenario conducted at Washington State
University. (Photo courtesy of Scott L. Oplinger, Washington

example, entropy, a mea-
sure of randomness or un-
certainty of NSs expressed
over a specified time period,
was significantly higher for
expert submarine piloting
and navigation teams com-
pared to less-experienced
teams. Entropy increased
as teams gained experience,
approaching the level seen
in experts. Transition matri-
ces (a plot of the NS_E being
expressed at time ¢ versus
that at time ¢ + 1) showed
that the expert teams use
more of the available NS_E
patterns available to them,
possibly indicating a more flexible team and one that does
not frequently get locked into a restricted pattern of en-
gagement.

In Figure 3, the entropy metrics for two novices and one
expert team are shown. Submarine Officer Advanced Course
(SOAC) novice team 1 did not complete session 5, while nov-
ice team 2 had technical issues that resulted in session 1 being
unavailable. However, the graphs in Figure 3(a) clearly demon-
strate that novices increase in the entropy measure as they gain
experience and plateau in sessions 3-5. Figure 3(b) compares
the expert entropy to the novice entropy in sessions 1-2 ver-
sus 3-5. A significant difference is shown between experts” and
novices” sessions 1-2.

NS expressions appear to be important constructs for study-
ing team dynamics as
v they change rapidly in response to short- and long-term

changes in the task [5]
¥ they relate to the task and some established aspects of team

cognition such as speech [6]

Vv they can be rapidly reported for use by educators/train-

ers [7]
¥ they can distinguish some aspects of novice/expert perfor-

mances
Vv they are sensitive to training effects.



Team engagement
NS are normalized
and pattern classified

by self-organizing
artificial neural
networks.
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FIGURE3 Entropy metric for two SOAC novice teams and one
expert team: (a) the Shannon entropy levels for two SOAC teams
that performed four SPAN simulations at different times during
their nine-weeks training and (b) the mean (+ S.D.) entropy
levels for SPAN sessions performed by expert submarine naviga-
tion teams (Expert) and for SOAC teams on their first two SPAN
performances (sessions 1 and 2) and subsequent performances
(sessions 3-5).
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