Downloaded by [Trysha Galloway] at 16:35 10 February 2014

-2
[
Team Neurodynamics

by The
Learning Chameleon, nd®

SOCIAL NEUROSCIENCE, 2014
Vol. 9, No. 2, 160-173, http://dx.doi.org/10.1080/17470919.2014.883324

Routledge

B
8 W Taylor &Francis Group

Toward a quantitative description of the neurodynamic

organizations of teams

Ronald H. Stevens'? and Trysha L. Galloway?

ISchool of Medicine, UCLA, Los Angeles, USA
’The Learning Chameleon, Inc., Los Angeles, USA

The goal was to develop quantitative models of the neurodynamic organizations of teams that could be used for
comparing performance within and across teams and sessions. A symbolic modeling system was developed, where
raw electroencephalography (EEG) signals from dyads were first transformed into second-by-second estimates of
the cognitive Workload or Engagement of each person and transformed again into symbols representing the
aggregated levels of the team. The resulting neurodynamic symbol streams had a persistent structure and contained
segments of differential symbol expression. The quantitative Shannon entropy changes during these periods were
related to speech, performance, and team responses to task changes.

The dyads in an unscripted map navigation task (Human Communication Research Centre (HCRC) Map Task
(MT)) developed fluctuating dynamics for Workload and Engagement, as they established their teamwork rhythms,
and these were disrupted by external changes to the task. The entropy fluctuations during these disruptions differed in
frequency, magnitude, and duration, and were associated with qualitative and quantitative changes in team organiza-
tion and performance. These results indicate that neurodynamic models may be reliable, sensitive, and valid indicators
of the changing neurodynamics of teams around which standardized quantitative models can begin to be developed.
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Like most forms of social coordination, teamwork is
complicated, complex, and noisy. It is complicated as
teams generally form around tasks that are too diffi-
cult for individuals to accomplish alone and require a
diversity of experience and expertise. It is complex in
the circular causality and feedback among multiple
systems and sub-systems involved. For instance, neu-
rophysiological events give rise to speech and other
forms of inter-person communications which in turn
affect subsequent speech and behavior. It is also com-
plex in the sense that behaviors emerge in teams that
often could not be predicted beforchand; i.e., the
whole can be greater than the sum of its parts.

Finally, teams are noisy in the sense that as the team
develops consensus, many actions may occur that are
peripheral to the immediate task.

These properties of being complicated, complex,
and noisy pose challenges for evaluating teams, and at
some point, seemingly simple questions like “How is
this team doing?”” become difficult to answer, particu-
larly if the goal is to capture quantitative measures of
team improvement over time. Part of the challenge is
that unlike the performance evaluations of individuals,
there are few measures and models for rapidly com-
paring across teams. This is particularly true with
teams of diverse experience, who are performing
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real-world tasks where errors may be infrequent and
do not directly correspond to failure (Schmidt,
Keeton, Slack, Leveton, & Shea, 2009).

We have proposed that neurodynamics may pro-
vide a platform for developing quantitative models of
team organization and perhaps performance (Stevens,
2012; Stevens, Galloway, Wang, & Berka, 2012). It is
not surprising that neurophysiologic activities are the
underpinnings of the social coordination dynamics
described above, yet it is only recently that their
evolving dynamics in real-world teamwork settings
have begun to be modeled (Dodel et al., 2011;
Dumas, Nadal, Soussignan, Martinerie & Garnero,
2010; Stephens, Silbert, & Hasson, 2010; Stevens,
Galloway, Berka, & Sprang, 2009).

Compared with other teamwork modeling
approaches like shared mental models (Entin &
Serfaty, 1999), team cognition (Cooke, Gorman, &
Kiekel, 2008), and macrocognition (Warner, Letsky,
& Cowen, 2005), neurodynamics have the advantages
of: (1) Speed—Neurodynamic measures can be mod-
eled and reported within seconds; (2) Specificity—
The signal spectra of different electroencephalography
(EEG)-defined cognitive measures are distinct and can
be modeled independently; (3) Diversity—Different
EEG cognitive measures may have different temporal
dynamics that could enable the reconstruction of the
teaming process in new and more understandable
ways; (4) Tools—Portable, high temporal resolution
EEG units are becoming widely available. This has
led to the idea of “team neurodynamics”, which we
have defined as the (often nonlinear) dynamics result-
ing from the quantitative co-expression of an EEG-
defined cognitive marker by different members of a
team (Stevens et al., 2012; Stevens, Gorman,
Amazeen, Likens, & Galloway, 2013).

In this study, we describe an information and orga-
nization-centric framework for team neurodynamics
that can be applied in many teaming environments.
The idea was that raw EEG data streams, once con-
verted into symbolic data streams of cognitive
measures, may contain statistical regularities represen-
tative of the task and team actions at any point in time.
In this way, the second-by-second sequence of sym-
bols (termed neurodynamic symbols or NSs) that arise
during teamwork may contain information relating to
team performance much in the way that words in a
sentence or the codons in nucleic acids convey infor-
mation (Salem, 2011; Schneider, Stormo, Gold, &
Ehrenfeucht, 1986). Fluctuations in the mix of sym-
bols may help identify “interesting periods” of team
organization that are relevant to teamwork and if so,
the frequency, duration, and magnitude of these fluc-
tuations could then be quantified by measuring the
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Shannon entropy across segments of the data stream
(Shannon & Weaver, 1949).

HYPOTHESES

The guiding hypotheses for this study were:

1. EEG-derived NS streams from dyads have a
dynamic structure.

2. Contextual disturbances in the task result in
modified team neurodynamics.

3. The changing distributions of neurodynamic
symbols in the data streams can be quantitatively
described by Shannon’s entropy.

4. The neurodynamics of different EEG-defined
cognitive measures are dissimilar.

METHODS
Participants

Fifteen 11th and 12th grade students (six male and
nine female) from advanced placement chemistry
classes were the experimental subjects. Informed con-
sent, allowing the students to participate in the study
and to have their images and speech made available
for additional analysis, was obtained from the parents.

The Edinburgh Map Task

For these studies, a well-defined but open-ended task
for two persons was used, which allowed the collec-
tion of detailed speech, mouse clicks, and video. This
task was a two-person problem-solving/navigation
exercise based on the Edinburgh Map Task corpus
(Doherty-Sneddon et al., 1997). In the Map Task
(MT), two team members sat facing one another and
each had a sketch map with several landmarks on it.
The two maps were similar, but not identical and the
students could not see each other’s map. One person,
the instruction giver (Giver, abbreviated G), had a
path printed on the map and attempted to verbally
guide the other person, the instruction follower
(Follower, abbreviated F) in drawing that path on the
F’s map. The resulting dialog was unscripted and
fluent and contained easily identified short-term
goals. The task was not timed and the participants
did not receive feedback on the quality of their
performance.

To support the collection of video and audio
streams, the drawing by the F was performed on a
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computer using Adobe Acrobat standard drawing and
erasing tools. Both the G and the F were fitted with a
9-clectrode EEG units (Advanced Brain Monitoring,
Inc., Carlsbad, CA, USA, described below) and
seated in front of a computer configured with
Morae Software (Techsmith, Inc., Okemos, MI,
USA), which simultaneously logged EEG, audio,
video, and the F’s mouse clicks. This configuration
supported the temporal alignment of speech, mouse
movements, and neurophysiologic measures. Samples
of four teams’ work that are highlighted in this paper
are shown in Figure 1 A-D, where the labels indi-
cate the performance epochs when a navigation point
was reached. In Figure 1B, for example, four major
deviations of the F from the G’s path were seen
between epochs 66-92, 134-232, 372-500, and
680-750. A scoring system was used to rate the
performances with points deducted for drawing inac-
curacies. In this system, a Bad Miss, where the route
went on the wrong side of a marker, was scored as —
2, while a Good Miss, where the edge of a feature
was clipped or if the route was taken too widely
(i.e., > % the height of a feature), was scored as —1.
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Fifteen sessions were collected from 10 different
student combinations. The average time to complete
the task was 834 + 374 (SD) seconds and the paired #-
test between the first and second performances was
not significant (¢ = 1.46, p = .19 df = 6). The higher-
ranked teams took longer (986 vs. 843 seconds) than
the lower-ranked teams, but again, the difference was
not significant (# = 1.44, p = .17, df = 12).

Much of the performance time (72%) was spent in
dialog with the G speaking nearly twice as much as
the F across the sessions; the average words per ses-
sion was (1725 + 872 (SD)), and the unique words
were (250 £ 69 (SD)). In all scenarios, the G provided
the majority of the directions as expected (Figure 2,
DIR). During the questioning (Q) and answering (A),
the F in some teams asked more questions while in
others, there was more balance in the Q and A. We
used a form category coding scheme for describing
the utterances, which was based on that of Urban,
Bowers, Monday and Morgan (1995) and described
previously (Stevens et al., 2009). The percent of dif-
ferent speech actions are similar to those described by
Louwerse and Crossley (2006).
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Figure 1. Sample MT performance measures. In panels A-D, the dotted line shows the path of the Giver’s map and the solid line that drawn
by the Follower. The heading above each figure is the team and session and the numbers in brackets are the overall points deducted. In each
figure, there are numeric notations where individual points were deducted. An expanded version of this figure can be found in the supplemental

materials at http://dx.doi.org/10.1080/17470919.2014.883324
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Figure 2. Proportion of time teams spent in speech activities. This
figure shows the proportion of time that 11 teams spent in different
speech activities where DIR = directions, Q = questions, A = answers,
AFQ = answer following question, ACK = acknowledgement,
STAT = statement. The contributions of the Giver are shown in black
and those of the Follower are shown in gray.

Electroencephalography

The Advanced Brain Monitoring, Inc., B-Alert™ system
contains an easily applied wireless EEG system that
includes intelligent software designed to identify and
eliminate multiple sources of biological and environ-
mental contamination and allow real-time classification
of cognitive state changes even in challenging environ-
ments. The nine-channel wireless headset includes sen-
sor site locations: F3, F4, C3, C4, P3, P4, Fz, Cz, POz
in a monopolar configuration referenced to linked mas-
toids. ABM B-Alert™ software acquires the data and
quantifies alertness, engagement, and mental workload
in real time using proprietary software (Davis &
Lumicao, 2004).

Embedded within the EEG data stream from each
team member are eye blinks, and the algorithms used
by ABM for calculating EEG automatically detect and
decontaminate the EEG streams by a process of inter-
polation. As the interpolation represents ~5% of the
simulation time, they are not likely to overly influence
the calculations of EEG-engagement (EEG-E), EEG-
workload (EEG-WL), or further neurodynamic
analysis.

The next data processing layer extracts second-by-
second calculations of the probabilities of High
EEG-E, Low EEG-E, Distraction, and High EEG-
WL using proprietary algorithms of ABM (Davis &
Lumicao, 2004; Levendowski et al., 2001). The neu-
ropsychological tasks used to build the algorithm and
to individualize the algorithm’s centroids were pre-
sented using proprietary acquisition software. The
algorithm was trained using EEG data collected
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during the Osler maintenance of wakefulness task
(Krieger & Ayappa, 2004), eyes closed passive vigi-
lance, eyes open passive vigilance, and three-choice
active vigilance tasks to define the classes of sleep
onset, distraction/relaxed wakefulness, low engage-
ment, and high engagement. Simple baseline tasks
were used to fit the EEG classification algorithms to
the individual so that the cognitive state models could
then be applied to increasingly complex task environ-
ments, providing a sensitive and specific technique for
identifying an individual’s neural signatures of cogni-
tion in both real-time and offline analysis.

The studies in this report have used the High EEG-E
and EEG-WL metrics. The two metrics have different
functional properties and are poorly correlated; over six
team member combinations, the average value of R was
—19 + .24. EEG-E is related to processes involving
information gathering, visual scanning, and sustained
attention while EEG-WL is correlated with objective
performance and subjective workload ratings in tasks
of varying difficulty. Like all EEG-derived measures of
cognitive activities, EEG-E and EEG-WL are approx-
imations of the many different ways Engagement and
Workload are described in the literature. Engagement,
for example, has been used to describe the amount of
cognitive processing a learner applies to a subject
(Howard, 1996), or as something that has to be broken
during a task so that a learner can reflect on his/her
actions (Roberts & Young, 2008). It shares similarities
with alertness or attention, can be visual and/or auditory,
and can be elevated through a variety of activities such
as inducing cognitive dissonance, posing argumentative
questions requiring the development of a supportable
position, and causing learners to generate a prediction
and rationale during a lesson. To some extent, we have
to accept the premise that precise terms will be difficult
to associate with different EEG-derived cognitive mea-
sures and that functional associations will need to be
empirically derived in the context of the task.

Across the MT sessions in our study, there were no
differences between the overall EEG-WL levels of the
G (mean (M) = .66, standard deviation (SD) = .09)
and F (M = .66, SD = .09), #32) = .53, p = .60, or the
overall EEG-E levels of the G (M = .42, SD = .15) or
F (M = .45, SD = .05), #(32) = —.84, p = .40).

RESULTS

For studying team processes, we chose a symbolic
approach for combining the data rather than directly
using two concurrent EEG data streams; this lets the
current status of the team as a whole to be represented
by a single symbol. To generate these symbols, we
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equated the absolute levels of EEG-WL or EEG-E of
each team member with his/her own average levels
over the period of the particular task. This allowed the
identification of whether an individual team member
was experiencing above or below average levels of
EEG-WL and whether the team as a whole was
experiencing above or below average levels. As pre-
viously described (Stevens, Galloway, Wang, Berka,
& Behneman, 2011), in this normalization process, the
EEG-WL levels were partitioned into the upper 33%,
the lower 33%, and the middle 33%; these were
assigned values of 3, —1, and 1, respectively, values
that were chosen to enhance visualizations of the
symbols. For instance, the symbol in Figure 3A
shows a situation where the EEG-WL of G was high
and that of F was low; in the text, this is represented
as G" F.

The next step combined these values at each epoch
for each team member into a vector representing the
state of EEG-WL for the team as a whole; these
vectors were used to train artificial neural networks
(ANNGs) to classify the state of the team at any point in

A. Map task dyads
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time (Stevens et al., 2009; Stevens, Galloway, Berka,
& Behneman, 2011). In this process, the second-by-
second normalized values of team EEG-WL for a
single MT performance (or for multiple performances
when across team models were being generated) were
repeatedly (50-2000 times) presented to a 1 x 9 node
unsupervised ANN. The result of this training was a
series of patterns, which we call NS patterns, that
show the relative levels of EEG-WL (or EEG-E) for
each team member on a second-by-second basis.
During the training process, a topology is developed
whereby similar EEG-WL vectors become adjacent
through short-range excitatory interconnections, while
the more disparate vectors are inhibited and co-locate
further away. The output of the ANN training is a
symbolic state space showing the possible combinations
of EEG-WL across members of the team for a perfor-
mance. The resulting ANN topology for these studies is
shown in Figure 3B, where NS #1 (upper left corner)
depicts a time where both G and F expressed above-
average levels of EEG-WL (i.e., G"F"). In NS #2 & #3,
the EEG-WL expression of F decreased, and at NS #6
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Figure 3. Structural properties of NS streams. (A) Levels of EEG-WL were extracted from raw EEG signals and partitioned into high,
average, and low categories (G = Giver, F = Follower). (B) An ANN-generated nine-symbol state space map shows the possible combination of
EEG-WL levels. (C) The transition frequencies are shown from the time ¢ symbol number (x-axis) to the time # + 1 second symbol number
(y-axis). (D) The symbol stream in (C) was randomized before creating the transition map.
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the NS represented the state G' F'. This topology helps
interpret the structure and dynamics of NS data streams,
particularly when teams with more than two members
are involved. The primary data source for further ana-
lysis was the second-by-second sequence of NS sym-
bols which for EEG-WL and EEG-E are abbreviated
NS WL and NS_E, respectively.

Our goal was to develop neurodynamic measures that
have structures which convey information regarding the
organization, function, and performance of teams.
Structure in this context refers to a pattern of relation-
ships among entities which in our studies consist of a
series of symbols representing the neurodynamic state of
the team around a particular construct like EEG-WL.

The short-term structure in the neurodynamic data
streams of the entire MT data set (8980 epochs) is
shown in Figure 3C. This transition diagram plots
the NS being expressed at time ¢ vs. that expressed
1 second later (i.e., ¢ + 1). The nonrandom arrange-
ment of the NS in the data stream is seen by compar-
ing this figure with one where the NS data stream was
randomized prior to plotting the transitions (Figure
3D). The NS data structure was highlighted by the
diagonal, suggesting a short-term persistent compo-
nent. The thickness of the diagonal indicates there
were also transitions from NSs to their immediate
neighbors on the linear ANN topology map. The
transitions on the diagonal were also expressed at
different frequencies, with the NS #8—NS #8 transition
being particularly frequent, while the NS #5-NS #5
transitions were less common. Thus, within the data
stream, some NS repeats were more common than
others and these differences may have significance
(i.e., information) regarding the performance.

Fluctuations in the mix of symbols in the second-by-
second data stream were then used to identify these
possible “interesting periods” of team organization.
These fluctuations were detected and quantified by
measuring the Shannon entropy (Shannon & Weaver,
1949) of the symbol stream over a sliding history
window, where the entropy was first measured over
the initial 70 seconds. Then, at subsequent seconds,
the window was shifted removing the first symbol and
appending a new one at the end, the entropy was then
recalculated. In this context, if a segment of the data
stream had a random mix of nine NSs, the entropy
would be 3.17, while if the symbol number in this
data stream was restricted to only five of the nine (i.e.,
more symbol persistence or organization), the NS WL
entropy level would drop to 2.32 (Figure 4A and B).
The working range of NS entropy values that we have
found in this study are shown in the shaded rectangle.

The entropy values themselves provide no informa-
tion on the nature of the organization, only that there was
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Figure 4. Properties of NS_WL entropy. (A) The bits of NS_WL
entropy are plotted against the number of symbols they represent;
the shaded panel shows the range of values observed. (B) A tabular
representation of panel A.

greater or lesser organization. The organizational speci-
fics of these segments, however, can be deduced from
the symbolic state space maps like those in Figure 3B.

The detailed neurodynamics of one MT team per-
formance are illustrated in Figure 5, which highlights
the major features seen in other teams. Here, team
performance (Figure 5A) is linked with the lengths
of speech transactions (Figure 5B), the NS WL
entropy profile (Figure 5C), and the NS E entropy
profile (Figure 5D). This was one of the lower-per-
forming teams with five mistakes (indicated by the
negative numbers in bold italic in Figure 5A). Two
significant mistakes were made in the first 232 epochs
(the numbers in parentheses), where the F went to the
wrong side of the palm trees and then later made a
large path deviation toward the upper right corner
before realigning with the intended path.

The dynamics are temporally plotted for each
speech transaction defined as sub-dialogues that
accomplish one major step in the plan for achieving
the task. A typical transaction gets the F to draw one
route segment on the map. For instance, the phrases
“(G) Do you have Abandoned Truck? (F) Ya, (G) You
should end at the K of the Abandoned Truck” are an
example of a transaction. Figure 5B plots the time for
each transaction (solid blocks) and below this are the
individual mouse clicks used by F when drawing.

Early transactions were short (<20 seconds) and
seemingly effective, as indicated by the few mouse
clicks. Around epoch 200, the average length of the
transactions began to lengthen as the team realized
that they were far off course (see Figure SA near E-
178). Details from the transcript gave little indication
that the team felt that there were performance pro-
blems at this time.

The NS WL entropy levels began the performance
around 2.7 bits (or about 6.5 symbols), representing a
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Figure 5. Linking the neurodynamics of EEG-WL and EEG-WL with speech and MT events (Performance G4S1). (A) The final map showing
the places where points were deducted; (B) The timing of the teams’ speech transactions with the Follower’s mouse clicks shown below; (C)
Histogram plot of NS_WL entropy (black) and mouse clicks (white); (D) Histogram plot of NS_E entropy. An expanded version of this figure
can be found in the supplemental materials at http://dx.doi.org/10.1080/17470919.2014.883324

restricted use of the symbol space, and then increased
over 300 seconds, reaching an average of 3.02 bits.
These early-session dynamics were seen in 5/15 MT
performances, and have also been seen in other team-
work situations; they may suggest a team establishing
a rhythm.

Most MT performances also showed context-
related NS WL entropy dynamics occurring when
the F had difficulty drawing with the mouse. This
contextual change in the task was an unintended con-
sequence of having the Fs draw their paths on a
computer. Occasionally, the mouse drawing was
delayed due to the microprocessor overload caused
by both the EEG acquisitions as well as the video
recording, and during these delays, the users often
repeatedly clicked the mouse. Segments with large
numbers of mouse clicks are easily visualized
(Figure 5C); this occurred near epochs 550-700 for
this team. When this occurred. it disrupted the trans-
action times (Figure 5B) and changed the organization
of the team, as reflected by the decreased NS WL
entropy.

Entropy values, on their own, indicate that there
are changing system dynamics, but they do not indi-
cate the nature of the changes; this step requires a
temporal mapping of the NS expression. Figure 6A
shows the NS WL entropy profile aligned with the
sequential mouse clicks (Figure 6B) and NS WL
symbol expression (Figure 6C), where a mark indi-
cates which NS is being expressed at each second.
During the first 200 seconds, there was an

overexpression of NS #6 and #4 (52% and 55% of
the total performance numbers, respectively) which,
referring to the nine-symbol state space, represented
periods where the EEG-WL of both G and F was low
(G' F', NS #6) or where G was average and F was low
(G* Fl, NS #4), i.e., the team was not working hard.

This was directly confirmed from the moving aver-
age profiles of the raw EEG-WL in Figure 6C and D,
where, for much of this time, both team members
were 1 SD below the means (indicated by the gray
bars).

Between epochs 600 and 700, when the NS WL
entropy was lowest, the total EEG-WL moving aver-
age values of the F exceeded 1 SD, while those of the
G were average/below average; again, these values
correspond to NS #8 & #9, which predominated dur-
ing this period.

The dynamics for a second performance are shown
in Figures 7 and 8. This was one of the more success-
ful teams with only two points being deducted
(Figure 1D). Around epoch 185, the F began having
drawing difficulties, which were paralleled by a tem-
porary lengthening of the speech transaction time
(Figure 7A) and a decrease in the NS WL entropy
(Figures 7B). The profile of the entropy for EEG-E,
NS_E entropy, (Figure 7C) did not show a similar
decrease at this time.

In Figure 8, the NS WL entropy profile in panel
(Figure 8A) has been shaded to highlight periods where
there was no speech (light gray), where G was speaking
(dark gray) or where F was speaking (black). With the
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Figure 7. Linking NS WL and NS E entropies with speech transactions (Performance G5S2). (A) The timing of the teams’ speech
transactions; (B) Histogram plot of NS WL entropy, and; (D) Histogram plot of NS_E entropy.

onset of drawing difficulties, as indicated by the increas- During this reorganization, the NS_WL symbol expres-
ing mouse clicks (Figure 8B), there was little speech, and sion switched from predominantly NS #1 and #2 to NS
NS_WL entropy first rose and then steadily declined. #6, 7, and 8, representing a switch from a pattern where
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Figure 8. Dynamics of EEG-WL metrics for team G5S2. (A) This panel plots the NS_WL entropy levels using a 70 second backward moving

average. The lighter areas are the periods when there was no speech;

(B) This panel plots the individual mouse clicks of the Follower. (C) The

expression of individual NS WL symbols are plotted each second; (D, E) These panels plot the EEG-WL levels for the Giver and the Follower

using a 70 second backward moving average.

both members had high/average EEG-WL levels to one
where G had below average EEG-WL levels; this pattern
was repeated in the EEG-WL profiles of the G and F. A
plot of the raw EEG-WL levels for G and F confirmed
the symbolic interpretation (Figure 8D and E).

This pattern of NS switching was also repeated
across the other performances where there were draw-
ing difficulties and excessive mouse clicks that were
paralleled by a decrease in NS WL entropy
(Figure 9). Higher frequencies of NS #6 to #9 were
seen during the drawing disturbances, while the
remaining epochs had higher frequencies of NS #1
to #5; these differences were significant (Chi-
square = 47.4, df = 8, p <.001).

Lastly, we analyzed the relationship between ses-
sion-aggregated NS_WL entropy levels and task perfor-
mance. As described in the “Methods” section, the
Human Communication Research Centre (HCRC)
MT performances can be quantified by the degree of

(o]
o

B Normal
-

16 Ml Drawing disturbances
<
oy
c 12
@
=3
g
= 8
2
2 4
@

0

1 2 8 4 5 & 72 8 9
Neurodynamic symbol (#)

Figure 9. Differential distribution of NS_ WL symbols during task
contextual changes. The epochs associated with drawing difficulties
were extracted from the NS data streams (n = 576 epochs) and the
NS frequencies compared with those of the remaining data
(n = 4086 epochs).
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Figure 10. Correlation of team performance and NS_WL entropy
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coherence between the G and F maps. In Figure 1A, for
example, the path deviations around epochs 66-92,
178-232, and 372-442 would all lower the perfor-
mance rating. Figure 10 plots the MT performance
score (i.e., points deducted) for the teams against the
resulting levels of NS WL entropy. The curve shows
that higher overall levels of NS WL entropy were
correlated with higher performance. In this analysis, a
power law curve was the best fit for the data and the
resulting correlation (R* = .38) was significant at the
0.01 level. There was one outlier in the data set, which
represented a team that performed poorly yet had high
NS WL entropy levels. This correlation was not seen
between the points deducted and the levels of the raw
EEG-WL for the F (R* = 0.02), the G (R* = 0.00), or the
average Workload of both (R* = 0.04).

Finally, in most performances, the neurodynamics of
EEG-E were measured in parallel with those of EEG-
WL. The overall NS_E entropy level was significantly
higher (M = 3.06 + .03 bits (SD)) than that of NS WL
(M =3.00 +.02 (SD) bits, t =2.8, p=.02). The NS E
entropy levels were not decreased at the beginning of
any performances or during periods when the F had
drawing difficulties. Where the NS_E entropy fluctua-
tions occurred (see Figures 5D and 7C), they were of
smaller magnitude and shorter duration than those
observed with NS_WL entropy, and were variably cor-
related with those of NS_ WL entropy when measured at
zero lag (r = .1 + .29, range —.3 to + .5, n = 10).

DISCUSSION

This study describes an information and organization-
centric framework for team neurodynamics, which
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can be flexibly applied across teaming environments.
The framework is information—organization-centric, in
the sense that raw EEG measures are converted into
symbolic data streams from which information about
the cognitive organization of the team is extracted.
Our first hypothesis was that NS data streams had
structure, a broad term referring to the notion of
patterns and relationships of entities. The entities in
this study were symbols, which are an abstraction of
the quantitative relationships between EEG-defined
cognitive variables. One of the motivations for using
symbols to describe these relationships is that the
same approach can be used with teams of up to 6-8
persons by expanding the member representations
within each symbol. The structure we observed was
a simple persistent pattern, where many symbols
repeated in sequence more often than expected, giving
rise to a diagonal in the 1 second lagged transition
matrices. The easy identification of this persistent
structure also shows one of the advantages of the
topology generated using a linear self-organized
ANN for deriving the symbolic state space. This
topology helped identify a second layer of structure
where the next symbol in a sequence was not the
exact symbol but one of the proximal neighbors in
the state space; this was indicated in the transition
map by the broadness of the diagonal. In addition to
the “local” transitions, there were more distal transi-
tions, the clearest example being the reciprocal transi-
tions between NS #1 and NS #9. The relative
frequencies of the different transitions in the map
also provide information regarding the rhythm of the
team on the task. For instance, there are relatively few
repeating NS #5 symbols suggesting that these were
times when the team was in transition. This symbol
represents periods where both team members had
average EEG-WL levels. The persistent structures
that we see do not preclude the existence of more
complicated hierarchical, nested, or longer-range
structures present in other natural systems like nucleic
acids or sentences. They do suggest, however, that
there is information within the structure, which can
loosely be thought of as messages or “interesting
periods”, which may relate to teamwork events that
affect the state of the system. This was borne out (1)
by developing entropy profiles of the amount of mix
of the symbols in the data stream and showing con-
tinually fluctuating values and (2) by relating these
fluctuations to contextual disturbances (Hypothesis 2).
We found that contextual disturbances to the task
had powerful effects on a team’s neurodynamic orga-
nizations. These disturbances arose as a consequence
of having the Fs draw maps on their computer screens
where the mouse would occasionally freeze. There
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were nine examples of these disturbances, providing
multiple opportunities to describe the teams’ neurody-
namic responses when they encountered them as well
as when they recovered from them. As shown in
Figures 6 and 8, the changes in the NS symbol
expression and the resulting entropy decreases during
these periods were initially gradual, often spanning
minutes, as the team developed a realization of the
changing conditions. Once the mouse difficulties were
resolved, the teams’ NS_WL entropy levels rapidly
(~30 seconds) increased, indicating that changing
entropy fluctuations may be a quantifiable team
dynamic. The largest magnitude of these drops was
~2.4 bits, which from Figure 4, would correspond to a
reduction from the theoretical maximum of 9 NS WL
symbols to around 5.5, representing a shrinkage of
about 40% of the state space.

Why do such organizations develop, especially
during periods of uncertainty or stress like those
experienced by the MT teams? One answer is that it
is an energy savings/efficiency device, i.e., self-orga-
nization of complex systems often results in a low-
ering of the number of degrees of freedom and
reduced system entropy (Guastello et al., 2013).
When one complex system (task) interacts with a
second complex system (team), it is difficult to reduce
the constraints of the task when difficulties occur, but
the degrees of freedom of the interactions of the team
members can be reduced by mutually agreeing on a
new plan. This is the essence of team safety and
resilience, which (Hollnagel, Woods, and Levinson
2006) views resilience as “...how well a system can
handle disruptions and variations that fall outside the
base mechanisms/models for being adaptive as
defined in that system.” This means a team will
most clearly demonstrate resilience when it encoun-
ters a disturbance outside the base task design. The
difficulties experienced by the MT teams when draw-
ing, would be such a disturbance and in all instances
resulted in a substantial reorganization of the team
that was seen as decreased entropy.

The differing frequency, magnitude, and duration
of the entropy fluctuations, along with the findings in
Figure 10 of a correlation between overall entropy
levels and performance, suggests that team neurody-
namic entropy may be a measure around which quan-
titative models of team performance can be developed
(Hypothesis 3).

The changing dynamics of NS Entropy in MT
teams parallel those we have observed with military
teams performing realistic simulations in ecologic set-
tings (Stevens et al., 2012, 2013). Here the navigation
simulations were divided into Briefing, Simulation,
and Debriefing segments, i.e., the context of the task

was changed by the training protocol. Much like we
have seen with the drawing difficulties of MT teams,
each of these simulation segments was characterized
by different NS distributions reflecting different orga-
nizational states of the teams (Stevens et al., 2013)
and these changes could be related to other measures
like conversation and spatial proximity (Gorman,
Martin, Dunbar, Galloway, & Stevens, 2013). The
team neurodynamic modeling systems also rapidly
detected periods of team uncertainty or stress on the
navigation simulations and quantitatively distin-
guished the performances of expert submarine naviga-
tion teams and Junior Officers in training (Stevens
et al., 2013).

Quantitative models for teamwork would have
widespread applicability for training, for continued
feedback and evaluation, and for increasing the over-
all resilience of teams. Teamwork is commonplace in
most complex environments and the effects of decre-
ments in team performance can range from inconve-
nient to catastrophic (Merket, Bergondy, & Salas,
1999). While much of the research on team safety
has been retrospectively obtained from incident
reports, more recently, researchers have begun to
adopt a prospective approach to identify factors con-
tributing to effective teams (Lamb, Jones, Steed, &
Stevens, 2013). Many of these studies and environ-
ments could benefit from an unobtrusive and rapid
and quantitative indicator of how a team is
performing.

Our current model for describing the neurody-
namics of teams is shown in Figure 11, where teams
which are operating efficiently and effectively use the
available cognitive states without becoming too rigid
(i.e., deterministic) or too fluid (i.e., random).

The ‘sweet spot’
Expert teams —

loosely organized

Teams—in—training
too organized

OUTCOMES

Novice teams — | Teams under stress —

disorganized High entropy Lowentropy |  ‘tunnel vision®
Random Fluid Rigid
Organization (i.e NS entropy)

High = — = Low
Flexibility / Creativity

Figure 11. A complexity-based cognitive model for teamwork.
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Contextual disturbances to the normal operating
rhythm may, depending on team experience, shift the
position of the team on this curve as they transiently
reorganize to meet these new demands.

The challenges of using entropy as a performance
metric for MT (and other team and task combinations)
will arise from the exponential nature of the entropy
scale and the limited range over which measurements
would seem applicable. There was one outlier in our
data set where the NS entropy level was very high, but
the performance was rated low. This outlier in Figure
10 would be to the far left of the curve (i.e., random)
in Figure 11, approaching that of a random perfor-
mance. In MT, we saw no examples of teams to the
far right side of the curve (too organized, determinis-
tic), as we have seen in submarine teams when
stressed (Stevens, 2012); this may be due to how
importantly the teams viewed the consequences of
the performance outcomes, which were high for the
submarine navigation teams and low for the MT
teams.

From the entropy profiles, there are multiple loci
and measures for developing within-task quantitative
models from NS WL entropy fluctuations (Figure 12).
The magnitude and duration of the entropy fluctuations
have already been mentioned as loci affected by exter-
nal perturbations, and as shown in Figure 8C, these
often represented a succession of incremental changes
resulting in a new organizational state of the team.
While these states were ones the team had visited
before, they now become more persistent, lasting up
to several minutes.

The recovery rate is considered as the time needed
for the team to return to their normal operating rhythm
and organization after a perturbation to the system,
and this can be very rapid (up to 4% faster than the
entropy decline), returning to maximum entropy
within 30 seconds of the removal of the perturbation.
Finally, the idea of a tipping point stems from the

“Tipping
“Early warning paint?”
signals?”

Lag

Duration Frequency I Recovery

level

NS entropy

Time -> Recovery time

Figure 12. Potentially useful metrics for quantifying NS entropy
fluctuations.
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work of Scheffer and coworkers (2009) on Critical
Transitions. The idea here is that gradual changes to
the system, not overtly obvious, increase system fra-
gility to the point that a small additional change
propels the team to the tipping point where a transi-
tion to an alternative state or regime shift occurs. This
may suggest the existence of early warning signals
that could provide a predictive horizon, perhaps not
for external disruptions like the drawing problems in
the MT but for more endogenous perturbations like
those seen with military teams.

The above discussions describe how neurody-
namics can be used in the context of teamwork to
develop models of team performance, but an equally
important question is: Why does it work? How can
neurodynamics provide informative team models
across teams, tasks, and perhaps time scales? We
believe that this results from the hierarchical arrange-
ment of teams with individuals working in smaller,
specialized units that are themselves nested within
larger units. Recent multifractal analysis (Likens,
Amazeen, Stevens, Galloway & Gorman, in press)
of the NS E and NS WL data streams suggests that
the neurodynamic models may capture basic neurolo-
gic—cognitive processes that span seconds to hours of
the team training hierarchy. Here interbrain coordina-
tion dynamics (Hasson, Ghazanfar, Glantucci, Garrod,
& Keysers, 2011), become linked across the whole
team in response to the task demands and these give
rise to the NS entropy fluctuations, which are them-
selves nested (and fractal) such that the second-by-
second changes reflect rapidly occurring team events,
while longer-lasting fluctuations parallel larger task
segments or significant external perturbations to the
team. In this way, the magnitude, duration, and fre-
quency of major NS entropy fluctuations that are
summed across a team’s performance contribute to
the observed performance differences.

A final finding was that the overall NS_E entropy
values were higher than those of NS WL entropy in all
teams, and there were no major fluctuations in the NS_E
levels directly associated with the drawing difficulties.
This suggests that the cognitive organizations we are
observing around the construct of EEG-WL are not
brain-wide phenomena. This finding that the most
revealing team neurodynamics for the MT are seen
with EEG-WL is interesting as this is opposite to what
we have seen with submarine navigation teams, where
the major reorganizations were EEG-E-related (Stevens,
2012). In retrospect, this may reflect the nature of the
tasks. According to the EEG developers, EEG-E is
related to processes involving information gathering,
visual scanning, and sustained attention, and while
MT requires substantial computer screen scanning,
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team members have independent screens with little
coordinated image scanning, i.e., viewing remains an
individual, not a team task.
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