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Abstract: The goal of this study was to evaluate different neurodynamic 
representations for their ability to describe the interactions of team members with 
each other and with the changing task. Electroencephalography (EEG) data 
streams were collected from six crew members of a submarine piloting and 
navigation team while they performed a required training simulation. A 
representation of neurodynamic organization was first generated by creating 
symbols every second that showed the EEG power levels of each crew member. 
The second-by-second expression of these symbols continuously varied with the 
changing task, and the magnitude, duration and frequency of these variations 
could be quantitated using a moving window of Shannon entropy over the symbol 
stream. These changes in neurodynamic organization (i.e. entropy) were seen in 
the alpha, beta and gamma EEG frequency bands. A representation of team 
members’ synchrony was created by measuring the mutual information in the 
EEG power levels for fourteen dyad combinations. Mutual information was 
present in the gamma EEG band, and elevated levels were distributed throughout 
the task. These discrete periods of synchrony were poorly correlated at zero lag 
with either changes in the team’s neurodynamic organization, or speech patterns. 
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INTRODUCTION 

Oscillation-based neurodynamic connectivity is a property that scales 
from the millisecond levels of neuronal spike trains during stimulus encoding 
(Schneidman, Bialek & Berry, 2003) through the larger scales of sensory-based 
computations and across-brain network interactions, leading to synchronized 
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observable actions and behaviors (Onkin, Karunasekara, Kayser, & Panzeri, 2015; 
Sporn, 2012). A challenge for teamwork research is to develop neurodynamic 
models of teams over these time scales that are useful for understanding and 
predicting team behavior, yet are also sufficiently detailed mechanistically to 
support robust theory building and team training interventions.  

One approach would be to conceptualize the neurodynamic responses of 
a team as hierarchies of fast and slow variables (Flack, 2012). Slow variables as 
the name suggests, arise from mechanisms that naturally integrate over faster 
microscopic dynamics, and represent some average of the noisier activities below. 
As neurophysiologic hierarchies are transited upward from faster scales to slower 
scales what is lost in the mechanistic details of neuronal spike generation and 
propagation is gained by tighter relationships with more easily-recognized, 
observer-defined variables such as team coherence, flexibility or resilience 
(Stevens, Galloway, Lamb, Steed, & Lamb, 2015).  

Electroencephalography is often the tool of choice for studying team 
neurodynamics in natural settings. EEG is the recording of electrical activity of 
the brain at different regions along the scalp and the rhythmic patterns in the 
electrical oscillations from different brain regions contain signals representing 
complex facets of brain activity (Buzaki, 2006). EEG has traditionally been 
viewed as a tool for studying individual cognition in the milliseconds to seconds 
range. There is no a priori theoretical reason, however for not extending this to 
include teams operating over minutes or hours in military, educational and 
healthcare environments.  

At the millisecond to seconds’ range of neurophysiologic scales, markers 
of social coordination occur during common human-human interactions (Tognoli 
& Kelso, 2015). Using high spectral EEG, multiple neuromarkers of social 
coordination have been described in the 9-12 Hz frequency range which have 
maximal activity at different EEG scalp locations. These markers include the 10.9 
Hz phi complex which is modulated by intentional coordination (Tognoli, 
Lagarde, De Guzman & Kelso, 2007), and the medial left and right mu EEG 
components in the alpha wave (9 - 11 Hz), and beta wave (15 - 20 Hz) frequencies 
which may represent activities associated with the human mirror neuron system 
(Oberman, Pineda & Ramachandran, 2007; Pineda, 2008).  

Less is known about the slower variables of team neurodynamics, i.e. in 
the minutes to hours range. Neurodynamic organization and synchronization is an 
information-based dynamical construct that describes the team-task interactions 
at the seconds, minutes and hours scales in the context of the underlying 
neurophysiology (Stevens, Gorman, Amazeen, Likens & Galloway, 2013). These 
information and organization constructs are derived from team-wide symbolic 
representations of EEG amplitude dynamics as teams perform tasks (Stevens & 
Galloway, 2014, 2015) and are intended to bridge the gap between the fast 
neurophysiologic and slow observational variables of teamwork.  

Describing the role of different neurodynamic representations with 
regard to team function, performance and synchrony depends, in part, on relating 
neurodynamic organizations with ideas on the form(s) of synchrony being 
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observed. Burgess (2013) recently distinguished four different forms of across-
system synchronizations that have relevance for brain hyperscanning studies. 
These include: (a) coincidental synchrony when non-coupled events occur simul-
taneously, an example being checkout lines in a store; (b) external entrainment, 
an example being musicians playing in time to a metronome; (c) driven synchrony 
where the behavior of one individual drives the behavior of others, i.e. an audience 
listening to a lecture; and, (d) reciprocal synchronization as seen in the repetitive 
speaker-listener couplings described by Baess et al., (2012), and Dumas, Nadal, 
Soussignan, Martinerie and Garnero (2010).  

In this paper we consider team neurodynamic interactions in the context 
of four different hierarchies and scales. First is the temporal scale; our modeling 
scheme encompasses times from momentary EEG oscillations through changes 
associated with large-scale task segments lasting an hour or more. The second is 
the scale of EEG frequencies. Many moment to moment acts of human cognition 
occur in the 1-40 Hz range where activities in different frequency bands are 
associated with different processing pathways such as sensory processing or 
neuromodulation (Buzaki, 2006). Outside the previously mentioned alpha and 
beta wave-associated social coordination markers, little is known of how the 
immediate task context is represented by a team across these frequencies. A third 
context is the region of the brain being monitored, with different EEG sensor 
locations being differentially receptive to activities associated with multiple 
functional networks. A final context is the interaction hierarchy of the team with 
the evolving task requirements driving the team collaboration activities.  

While our focus is on understanding team performance under single trial 
conditions, our studies target moments when teams need to adapt. Adaptation is a 
common and multi-faceted teaming construct which can be thought of as a 
modification of team behavior in response to changes in the operating 
environment.  There can be planned adaptations which represent natural, large 
scale changes in the task cycle like the briefing and debriefing task segments.  
Adaptation at smaller scales would include the continuous variation in the amount 
of automaticity versus executive control, or trading speed for accuracy as teams’ 
shape behaviors to the unfolding task demands (Guastello et al., 2013).  

The goal of this study is to evaluate different neurodynamic represent-
tations for their ability to describe the interactions of the team members with each 
other and with the changing task requirements. These representations were 
calculated each second for each of the 1-40 Hz EEG frequency bins and included: 
(a) the EEG power averaged across the six team members; (b) the mutual 
information (MI) of team dyads, and (c) neurodynamic entropy fluctuations 
developed from symbolic representations of the EEG power levels of all crew 
members. We describe these dynamics in a case study context of a six-person 
submarine navigation team where each team member had specialized 
responsibilities yet needed to coordinate activities with the other team members. 
Central questions for this research area are how the neurodynamic properties of 
an individual scale into those of the team, and whether information-theory 
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approaches can begin to provide quantitative measures of the changing dynamics 
of teamwork. 

METHODS 

Submarine Piloting and Navigation 

Submarine Piloting and Navigation (SPAN) simulations are required 
exercises for Junior Officers in the Submarine Officer Advanced Candidacy 
course at the US Navy Submarine School. SPAN sessions contained three 
performance segments: Briefing, Scenario, and Debriefing. In the Briefing the 
team reviewed the environmental conditions and other ships in the area, and 
statically established the submarine’s position. The Scenario was the training part 
of the navigation simulation where events included: encounters with approaching 
ships, avoiding shoals, changing weather conditions and instrument failure. The 
Debriefing was an after-action review where all team members participated in 
critical performance discussions. 

The experimental SPAN teams included six crew members: the 
Navigator (NV) and Assistant Navigator (AN) with overall task accountabilities; 
the Officer on Deck (OD) who was on deck with a lookout; the Contact Manager 
(CM) who visually identified and kept track of other ship traffic and noted 
contacts of concern; the Quartermaster (QM) who maintained the ship’s positon; 
and the Radar operator (RD) who identified other ships in the area and helped 
with navigation; (Other people were “satellite” team members but were not 
directly involved in the team processes analyzed here). 

The team performance studied had a Briefing of 289s, a Scenario of 
3074s and a Debriefing of 992s. Embedded within the simulation were short and 
long-term perturbations that disrupted team rhythm, the largest being when the 
Assistant Navigator paused the simulation for~ 4 min. for discussions with the 
crew.  

Electroencephalography 

The X-10 headsets from Advanced Brain Monitoring, Inc. were used for 
data collection. This wireless EEG headset system included sensor site locations: 
F3, F4, C3, C4, P3, P4, Fz, Cz, POz in a monopolar configuration referenced to 
linked mastoids; bipolar derivations were included which have been reported to 
reflect sensorimotor activity (FzC3) (Wang, Hong, Gao & Gao, 2007), workload 
(F3Cz, C3C4; Roux & Uhlhaas, 2014) and alpha wave components of the human 
mirror neuron system (Oberman et al., 2007). Embedded within the EEG data 
streams of the team members were eye blinks which were automatically detected 
and decontaminated using interpolation algorithms contained in the EEG 
acquisition software (Berka et al., 2004). These interpolations represented ~5% of 
the simulation time and in previous studies have not significantly influenced the 
detection of team neurophysiologic activities which occurred throughout the 
performances (Stevens & Galloway, 2014; Stevens et al., 2012). The EEG values 
were computed each second at each sensor for the 1 – 40 Hz frequency bins by 
the B-Alert Lab® software.  
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Neurodynamic Data Modeling Approaches 

The goal was to develop neurodynamic data streams that had internal 
structure(s) with temporal information about the organization, function and 
performance of teams, in this study, a six person SPAN team. The different 
modeling approaches are outlined in Fig. 1, and illustrate a single frequency and 
sensor channel model (i.e. 10 Hz frequency from the CzP0 channel). As there are 
14 sensor channels and forty 1 Hz frequency bins for each channel, this modeling 
was repeated 560 times.  

Fig. 1. Derivation of neurodynamic variables of teamwork. (A) The first variable is 
a measure of EEG power levels averaged across team members. (B) The second 
variable results from the transformation of an individual’s EEG power levels into a 
performance-normalized symbolic representation. The time-averaged Shannon 
entropy of this symbol stream results in a variable termed Individual Entropy (IE). 
(C) The second-by-second normalized EEG values from dyad pairs can be used
to calculate the mutual information dynamics. (D) The symbolic EEG power values
of the six-person crew can be aggregated each second into a single neurodynamic 
symbol representing the distribution of EEG power levels of the team.
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The first variable was the native EEG power values averaged for the six 
team members. The simple averaging of an EEG marker (i.e. power levels at a 
frequency) across members of a team is particularly useful for identifying when 
all team members had elevated or depressed levels of a particular EEG marker. 
The limitation of this approach is that the relationships between team members, 
their individual roles and the immediate context do not factor into such an 
aggregate. Also, periods where all team members had high or low marker levels 
can be infrequent, especially in more experienced teams, (Kolm, Stevens & 
Galloway, 2013) and focusing on them would ignore the other synergistic links 
among team members expected at the neurodynamic level. 

Treating data from multiple time series symbolically is another approach 
that has been used for discovering interesting data patterns in temporal data 
streams (Daw, Finney & Tracy, 2003; Lin, Keogh, Lonardi & Chiu, 2003). 

To generate Neurodynamic Symbols (NS) for six person SPAN teams, 
each second the absolute levels of one EEG frequency bin (i.e. 10 Hz or 39 Hz) 
of a team member was equated with his/her own average levels over the period of 
the task. This identified whether at a particular time point an individual team 
member was experiencing above or below average levels of an EEG marker and 
whether the team as a whole was experiencing above or below levels. Classifying 
the set of symbols over entire performances (i.e. including Briefing and 
Debriefing segments) provided neurodynamic models encompassing a 
comprehensive set of task situations and loads (Fishel, Muth & Hoover, 2007).  

As previously described (Stevens et al., 2013), in this process the EEG 
power in the 1 – 40 Hz frequency bins were partitioned into the upper 33%, the 
lower 33% and the middle 33%, which were assigned values of 3, -1, and 1 
respectively. These values were chosen for data visualization purposes and can 
also be used symbolically for modeling Mutual Information (MI). The next step 
combined these values for each team member into a six-value vector which was 
ordered into a six histogram NS; a sample NS is shown toward the right in Fig. 1. 
These symbols showed the EEG 1 – 40 Hz frequency bin levels for each person 
in the team and situated them in the context of the levels of the other team 
member(s); these symbol combinations also represented the probability 
distribution of the team’s response to the changing task stimuli.  

These vectors, which were generated each second, were classified by a 
pre-trained artificial neural network into a symbol space and assigned a symbol 
number. This neural network was originally trained using an unsupervised 
artificial neural network architecture containing 25 output nodes and using 
performance data from six additional SPAN team performances (i.e. the training 
set). Similar neural network training protocols using several hundred nodes have 
shown that the neurodynamic relationships among the members of the team are 
persistent and can be adequately modeled with a symbolic space of 25 – 36 nodes. 

The SPAN performance data that was used for creating the team entropy, 
termed NS Entropy, was a linear sequence of the twenty-five symbols, one for 
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each second of the task (Fig. 1d). This symbolic stream contained a neuro-
dynamic history of the team as described by a particular EEG frequency bin from 
a particular scalp electrode. The procedure was then repeated for the remaining 
39 frequency bins and at each sensor site. The next challenge was to determine 
the statistical properties of the long, internally structured data streams and relate 
them to individual and team actions during training (Wallace, 2013). As described 
below these symbols can be plotted over time for single or multiple EEG 
frequencies to provide visual representations of the changing neurodynamics of 
the team’s performance. 

Quantitative estimates of the NS Entropy were derived by calculating the 
Shannon entropy of the NS symbol stream over a moving window of time. In this 
procedure the Shannon entropy was calculated for the first 100 seconds of data 
and then each second the window was shifted by one second, a new symbol added 
to the end, and the entropy re-calculated. High levels of entropy represent a less 
organized team neurodynamically while lower entropy levels indicate a more 
organized team as fewer NS symbols are represented in the 100s time window.  

Short and long-term changes in team entropy levels identify fluctuating 
periods of team neurodynamic organization but they provide little information 
about the degree of neurodynamic synchrony and the possible roles of these 
synergistic interactions during teamwork; mutual information descriptions help 
supply this data. Mutual information is a measure of the mutual dependence of 
two variables, or how much knowing the value of one variable decreases the 
uncertainty of the value of the other. MI has been widely used for evaluating 
information representations, transmissions, and content in single neurons and 
populations of neurons in stimulus-responses paradigms (Schneidman et al., 
2003; Onken, Karunasekara, Kayser & Panzeri, 2014), as well as for reverse 
engineering gene regulatory and other complex networks (Villaverde, Ross, 
Moran & Banga, 2014). We wished to determine the relationships between MI 
and NS Entropy measures during teamwork, particularly as to whether they were 
complementary or redundant. The representations used for calculating the MI of 
dyads were the symbolic EEG neurodynamic state representations (i.e. -1, 1 and 
3) shown in Fig. 1C. In all studies a moving average window approach for MI 
data reporting was used as described above for NS Entropy, to directly compare 
the temporal changes and to relate the two measures to task events. 

The final variable was the Individual Entropy (IE) levels (Fig. 1B) that 
was calculated by treating the normalized EEG values symbolically and then 
calculating Shannon’s entropy over a 100s moving window. Individual Entropy 
values can be thought of as the neurodynamic organizations as individuals 
perform their task work, as well as their teamwork. If MI represents one aspect of 
teamwork, then MI vs. IE comparisons might provide a way of differentiating 
periods of teamwork vs. task work. Effect size statistics were calculated using the 
MES toolbox written for MATLAB and described by Hentschke and Stuttgen 
(2011). 
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RESULTS 

Descriptive Characteristics of Neurodynamic Measures 

 The frequency profiles of the team-averaged EEG power, team NS 
Entropy, and the average MI of thirteen dyad pairs is shown in Fig. 2. The total 
EEG power showed what would be an expected EEG profile of normal individuals 
with the highest power at lower frequencies which then decreased towards the 40 
Hz frequency bin. This inverse relationship reflects the scale-free nature of EEG 
power and frequencies. The NS Entropy profile showed a trough in the 8-12 Hz 
bins which then decreased further until 28 Hz where it levelled. Randomizing the 
neurodynamic symbol stream prior to calculating the NS Entropy increased the 
entropy to 4.42 and removed the fluctuations seen in the non-randomized data 
profile. Unlike the NS Entropy profile, the MI profile was low from 1-10 Hz, and 
then steadily increased until 40 Hz.  

 
Fig. 2. Spectral properties of neurodynamic measures. The power-frequency 
distributions for EEG power, mutual information and NS entropy were constructed 
from the EEG CzP0 channel data streams as described in the Methods. 
 

Differential Encoding of Neurodynamic Organizational  
Information across EEG Frequencies 

The first studies examined whether the 10 Hz and 39 Hz EEG frequency 
bins contained equivalent information regarding the teams’ dynamics. The 10 Hz 
frequency bin was selected based on the prominent NS Entropy trough at this 
frequency in the power spectrum.  The 10 Hz frequency bin was also of interest 
as multiple EEG social coordination markers have been defined in this alpha wave 
bin (Tognoli & Kelso, 2015). The 39 Hz frequency bin was selected as this gamma 
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wave bin showed the lowest NS Entropy levels in Fig. 2, indicating the highest 
degree of team neurodynamic organization. This increased neurodynamic 
organization in the gamma wave region has been seen with other team-task 
combinations, suggesting a broader role for these frequencies in team activities 
(Stevens & Galloway, 2015). For these studies we sequentially plotted the 
symbols from the 10 Hz (Fig. 3B) or 39 Hz (Fig. 3D) NS data streams that were 
modeled from the EEG CzP0 channel.  

 
Fig. 3. Neurodynamic expression maps. The two major segments of the task, the 
Scenario and Debriefing are labeled and color-coded, along with the period where 
the Assistant Navigator paused the simulation (Pause), and when there was a Man 
Overboard (MOB) incident. The CzP0 channel power spectrum was averaged 
across the six team members for the 10 Hz (A) and 39 Hz (C) frequency bins. The 
symbol maps for 10 Hz (B) and 39 Hz (D) plot the second-by second expression 
of the 25 NS. The Shannon entropy levels were calculated from the NS data 
streams with the traces overlaid on the NS maps. Randomizing the NS data 
streams prior to entropy calculations increased the 10 Hz entropy from 4.11 bits 
(SD = 0.28) to 4.45 bits (SD = 0.003); η2 = 0.40, CI95 [0.39, 0.42]. 
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The dominant feature in both of these plots was the non-uniform 
expression of the twenty-five symbol states and the changes that occurred at the 
Scenario-Debriefing junction. During the Scenario at 10 Hz NS # 2–5 and NS 
#10-12 were the most frequent symbols while NS # 16-25 were only sporadically 
expressed. At the start of the Debrief this expression pattern reversed with NS # 
16 and 24 - 25 dominating. Referring to the state space in Fig. 1 this symbol 
reversal represented a change from low to high team-averaged 10 Hz power 
levels. The NS expression in the 39 Hz frequency bin showed similar symbol 
reversals at the Scenario-Debriefing junction involving a switch from NS # 4-8 
(Scenario) to NS # 18-24 (Debriefing), representing an overall increase in gamma 
wave power. The changing symbol expressions at the Scenario - Debrief task 
junctions were rapid (seconds) indicating that NS expressions are dynamically 
responsive to task changes.   

While the overall trend from lower power in the Scenario to higher power 
levels in the Debriefing were similar for both the 10 Hz and 39 Hz data streams, 
cross-tabulation analyses indicated that the 10 Hz and 39 Hz symbol expressions 
in the Scenario and Debriefing were significantly different, (Scenario, χ2=656, df 
= 24, p < 0.001; Debriefing, χ2=398, df = 24, p < 0.001) and that the correlations 
between the NS entropy levels were moderate (Scenario, r = 0.22; Debriefing, r 
= 0.23).  

Within each training segment there were shorter scale (30-150s) blocks 
of more restricted NS symbol expressions which were associated with decreased 
NS Entropy. The most obvious example was between 2148 – 2382s when the 
Assistant Navigator paused the simulation for discussions with the crew. This 
resulted in a significant neurodynamic reorganization in the 10 Hz frequency bin 
characterized by increased expression of NS #24 & #25 (i.e. increased 10 Hz 
power levels). This neurodynamic reorganization was not seen at the 39 Hz EEG 
frequency bin. This result illustrates a third point, information about the team 
performance may be distributed across the 1-40 Hz EEG frequency power 
spectrum of the CzP0 channel.  

A comparison of Fig 3B and 3D indicates a useful characteristic feature 
of the team NS entropy. Irrespective of whether the team as a whole was 
expressing low (as in the Scenario) or high (as in the Debrief) power levels of an 
EEG marker, the NS Entropy provided a consistent and quantitative measure of 
this organization. Second, unlike EEG power levels which decrease with 
increasing frequency, the degree of neurodynamic organization is uniform across 
the EEG frequency spectrum meaning that quantitative comparisons can be made 
in response to specific events or task segments across frequencies.  

The contrasting 10 Hz and 39 Hz NS symbol expressions and entropy 
levels during the Pause suggested that different EEG frequencies from the same 
scalp location carry different information about the team’s neurodynamic organ-
ization. To broadly estimate the relatedness of the neurodynamic organizations in 
the different EEG frequency bands a frequency by frequency correlation was 
conducted of NS entropy at the CzP0 channel. Each second the NS Entropy levels 
of the current 1-40 Hz frequencies were correlated with the entropy levels of the 
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remaining thirty-nine EEG channels. Also shown is a correlation plot when the 
NS data stream was randomized before calculating the NS Entropy. The 
correlations were not diffuse across the frequency channels but highlighted areas 
of increased correlation in the 8-12 Hz, the 16-22 Hz, and the 32-40 Hz frequency 
bins. Consistent with the data in Fig. 1, the NS Entropy in the 10 Hz frequency 
bin was poorly correlated with that in the 39 Hz bin. 

 

 
 
Fig. 4. Across-frequency correlations of NS Entropy: (a) Correlations for the NS 
data stream resulting from data modeling of the CzP0 EEG values; (b) Correlations 
when the twenty-five symbols in the data stream were randomized before 
calculating the NS entropy levels. 

 
Fig. 5. Temporal-frequency plot of NS Entropy. This figure plots the NS entropy 
levels vs time and EEG frequency. 
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 The frequency-NS Entropy relationships for each second of the 
performance are shown in Fig. 5. Viewed from above, the times of decreased NS 
Entropy (i.e. increased team neurodynamic organization) appeared darker. During 
the first 800s there were consistent organizations (i.e. reduced entropy) in the 8-
11 Hz and also the 16-40 Hz bins with the lowest NS entropy in the higher EEG 
frequencies. This data is consistent with the reduced NS symbol expression and 
entropy levels seen at both the 10 Hz and 39 Hz frequency bins in Fig. 2 during 
the first 900s. The NS Entropy levels then increased across all frequencies as the 
team engaged in their navigation duties until ~ 2200s when the Assistant 
Navigator paused the simulation which resulted in decreased entropy levels 
primarily in the 8-11 Hz frequency bin. After the Pause, variable regions of 
decreased NS entropy occurred throughout the performance until the Debriefing 
at 3365s.  

Mutual Information Dynamics across Team Dyads 

The next studies transited from documenting the team’s neurodynamic 
organizations to synchronizations among the team members. Fourteen team dyads 
were created from the six member crew and the mutual information dynamics 
were calculated for the performance, the dyads are shown in decreasing order of 
MI (Fig. 6). In contrast to the NS entropy expressions in Fig. 3, the MI expressions 
were more discrete. The dyads with the highest MI levels were generally those 
containing the QM, the RD or the NV as one of the crew pairs, and the differences 
between the highest to the lowest dyad levels showed a moderate effect size (NV-
QM M=.51,SD= 0.13 vs CM-AN , M=0,44, SD = .02; η2 = .16, CI95 = [.14-.17]). 

 
Fig. 6. Mutual information of team dyads. The mutual information dynamics of 
fourteen dyad pairs from the six-person crew were calculated and plotted in the 
order of decreasing mutual information.  

Once again the Pause interval was interesting neurodynamically and 
provided an opportunity to compare MI dynamics with the speech patterns of the 
crew.  Prior to the Pause the speech was distributed across the crew. Speech during 
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the first half of the Pause was dominated by the AN and punctuated with the REC 
(who was not wearing an EEG headset) (Fig. 7A).  The segments where the crew 
members were speaking during the Pause is shown in Fig. 7A.  

From Fig. 7 the Pause region was one where most dyads showed 
increased levels of MI, some of which extended beyond the simulation 
suspension. Figures 7B and 7C show the MI dynamics at the beginning and end 
of the Pause. The MI of the CM-NV and the RD-NV rose shortly after the pause, 
followed by the AN-QM dyad. The other MI increases shown during the Pause 
interval were associated with the NV-AM and CM-QM dyads. These increases 
are interesting as most of the crew involved (i.e. CM, QM, NV) did not speak 
during this time. Shortly after the break, there was a strong MI peak from the RD-
OD dyad at a time when the OD did not speak, and the RD spoke sporadically.  
 

 

Fig. 7. Temporal dynamics of dyad MI and speech flow during the Pause. (A) The 
top panel plots when the different team members were speaking. Panels B and C 
plot the MI for the team dyads. The dyads have been separated into two groups 
representing dyads with increased MI during the Pause (B) or after the Pause (C). 
The MI for the AN-NV, the AN-CM and the AN-OD which had the lowest levels 
from Fig. 6 are not shown. 

Initially we thought that elevated MI might represent times when there 
were significant NS Entropy decreases resulting in a negative correlation between 
the two measures. A performance-wide comparison was made using averaged NS 
Entropy data across all EEG channels and frequencies, and the MI levels from 
each of the dyads in Fig. 6. Like NS Entropy, the overall MI fluctuated with peaks 
occurring between 850-1050s and 1340-1550s and during the Pause interval 
between 2148-2382s (Fig. 8a). While there seemed to be a concordance between 
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the two measures during the Pause interval, there was no correlation at zero lag 
(Fig. 8b). Cross-correlation analysis at positive or negative lags revealed more 
significant negative correlations (r ~ -0.2), particularly with earlier time lags (Fig. 
8b). 

 
Fig. 8. Dynamical comparisons of NS entropy and mutual information. The team 
NS Entropy was averaged across all frequencies and all sensors, and the mutual 
information values were averaged across the fourteen dyad pairs in Fig. 6. The 
numbers represent performance events surrounding those time periods. (1) The 
team was having difficulty remembering the sequence of buoys to use when 
establish the ship’s position. (2) The team was preparing for a turn into difficult 
waters with other ship traffic. (3) The simulation Pause called by the Assistant 
Navigator. (4) The Man Overboard event. (5) Beginning of the Debriefing segment. 

A second set of correlations were made, using the 1-40 Hz averaged NS 
entropy and MI from the different EEG channel sensors (Fig. 9). While the levels 
of NS entropy and MI clustered differently for the monopole (e.g. Fz, F3, F4, C3, 
C4, P0, P3 and P4) and bipole EEG channels, the decrease in NS entropy was 
associated with an increased value for MI. The highest MI levels were associated 
with the parietal and central sensor locations while the frontal and midline sensors 
had lower MI levels. 

The negative correlation (r =-.7, p < 0.003) between MI and NS entropy 
levels supports the hypothesis that performance wide, increased MI was 
associated with the periods of decreased NS entropy. To associate the MI and 
entropy dynamics more closely, in our final studies, we compared the MI 
dynamics with the dynamics of the individual (i.e. single person) entropy from 
each of the persons in the dyad.  Individual entropy levels might be expected to 
show periods of symbol persistence in response to both their individual task 
activities, e.g. when the radar operator was determining the positon of other ships, 
as well as team-wide activities, e.g. sharing this information with the team. Mutual 
information being a dyad-based metric might be expected to be more restricted to 
person-person interactions. 

Most dyads showed both elevated MI and decreased IE during the 
simulation Pause segment and also at the Brief-Debrief junction (Fig. 10). There 
were also multiple examples where there was decreased IE with little MI and 
periods with increased MI and little IE. The performance-wide correlations were 
generally low (=< 0.2) at zero lag. 
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Fig. 9. Relationships between mutual information and NS Entropy at different EEG 
channels. 

 
Fig. 10. Dynamics of dyad MI and the individual entropy of the team members. 
The MI for the dyads CM-RD (A), NV-QM (B), OD-NV (C) and RD-NV (D) are 
plotted with the IE of each of the members. The MI values are the lower scale 
values. 
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DISCUSSION 

The first goal of this study was to derive a better understanding of the 
dynamical relationships between the different neurophysiological representations 
of the teams’ EEG data streams. The second goal was to determine how the 
changing dynamics of these variables related to team responses to different task 
events. These objectives are part of a larger effort to develop a framework for 
team neurodynamics that bridges the micro-scale changes of neurophysiologic 
signals with speech and larger-scale observable behaviors.  

Constructing such team representations requires high levels of 
abstraction. We reduced the degrees of separation from the native EEG signals to 
useful abstractions by building on existing neurodynamic structures with nested 
spatial and temporal levels. In this way, some teamwork measures such as 
neurodynamic entropy had slower (minutes-tens of minutes) temporal dynamics 
(Stevens & Galloway, 2014) than faster (seconds-minutes) mutual information 
measures of dyads (Stevens & Galloway, 2015), or speaker-listener neuro-
physiologic couplings that change over tens to hundreds of milliseconds (Dumas 
et al., 2010; Stephens, Silbert & Hasson, 2012). 

NS Entropy may be the most versatile of the three neurodynamic 
measures studied as it describes a quantitative measure of teamwork related to 
team organization. The idea behind neurodynamic organization is that the team 
becomes dynamically entrained by the evolving task and these entrainments result 
in neurodynamically persistent states. These states can be visualized in symbol 
maps and quantitated by fluctuations in NS Entropy. NS Entropy is uniquely 
suited for identifying neurodynamic organizations as irrespective of whether the 
team as a whole was expressing high or low levels at a particular EEG frequency. 
The NS Entropy provides a consistent and quantitative measure of this 
organization. Unlike EEG power levels which decrease with increasing 
frequency, the degree of neurodynamic organization is uniform meaning that 
quantitative across-frequency comparisons can be made in response to specific 
events or task segments. By normalizing the symbol representations across the 
entire performance including the Briefing and Debriefing as well as the Scenario, 
quantitative comparisons can be made across teams, team experience and training 
protocols with less need for standardized models or baseline comparisons. Finally, 
we have generated similar NS Entropy models with teams consisting of two to six 
members performing a variety of tasks indicating the scaling potential (Stevens & 
Galloway, 2015). 

These properties have helped describe changes in a team’s neurodynamic 
organization associated with small and large task changes, often during periods of 
stress.  For instance, while dyads of high school students performed a map 
navigation and drawing exercise, the largest entropy drops occurred when the 
follower briefly lost control of the mouse while drawing (Stevens & Galloway, 
2014, 2015). Similarly, in submarine navigation teams, the magnitude and 
persistence of NS Entropy declines were the greatest when there were adverse 
task conditions (fog, current, or other ship traffic) which caused the teams to 
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deviate from their planned course of action. Early studies have also shown that 
the NS Entropy levels during the Scenario were higher for experienced teams (i.e. 
boat navigation teams) than for junior officer teams undergoing training to 
become navigators and boat operators (Stevens et al., 2013), and more recently, a 
positive correlation was seen between the NS Entropy levels and team resilience 
as measured by an observational instrument recently adopted by the submarine 
fleet (Stevens et al., 2015). 

The similar findings across teams of different compositions and 
experience collaborating on different tasks suggest that NS Entropy measure-
ments may be a generic modeling for studying team dynamics. The types of tasks 
and teams we have studied represent ‘detailed task teams’ with a well described 
goal and hierarchical definition (Anicich, Swabb, & Galinski, 2014). It will be 
important to extend these studies to collaborative situations where goals are more 
ambiguous and compromise is important to further test the generality of the 
neurodynamic models. 

While neurodynamic organization is a useful property for linking across 
scales of neurodynamic, cognitive and observational measures, the native EEG 
signals provide theoretical groundings for linking to the neuroscience research 
base. The links between NS Entropy and native EEG amplitude levels were made 
symbolically where the expression of different NS were mapped onto a symbol 
space whose topology was such that symbols representing many team members 
with below average EEG power levels mapped toward the beginning of the 
symbol space (NS #1-5) while those symbols representing many team members 
with high levels mapped toward the end (NS #20-25). This topology resulted from 
the competitive properties of Kohonen networks used for the model development. 
This mapping allowed easy identification of high or low average EEG power. 

A prominent feature was the change in the teams’ neurodynamic 
reorganization that occurred at the Scenario – Debriefing junction, a change that 
occurred at multiple EEG frequencies. The switch from desynchronized (e.g. low 
power) alpha rhythms during the Scenario to synchronized (high power) alpha 
rhythms in the Debriefing indicates a reversal in the attentional state of the team. 
The high degree of Scenario-related alpha desynchronization suggests the team 
members were closely attending to the unfolding events and activities in the 
environment. These activities would simultaneously include attention to each of 
the other team members as well as the task events. During social coordination, 
vision of the partner substantially desynchronizes alpha rhythms, with the power 
of the fluctuations reflecting the complexity of behavioral information acquired 
about the partner (Tognoli & Kelso, 2015). During the Debriefing, much of the 
team’s attention was directed to the instructor or on the response of a single other 
team member.  

One of the challenges in interpreting the changes in 8-11 Hz rhythms is 
the presence of other social coordination markers including the phi complex 
(Tognoli et al., 2007) and the medial, left, and right central mu rhythms that also 
map between 9 and 11.5 Hz and are suppressed by movement, or imagined 
movements (Menoret, Varnet, Fargier, et al., 2014; Caetano, Jousmaki & Hari, 
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2007; Pineda, 2008). In Fig. 5 unequal levels of NS entropy were seen in a band 
across the 8-12 Hz frequency bins indicating heterogeneity in this region. Whether 
this represents the differential expression of social coordination markers in this 
region will require further studies using additional sensor channels during EEG 
acquisition.  

While the amplitude of alpha-band activity is generally suppressed by 
eye opening, visual stimuli and visually scanning, it is enhanced during more 
internal tasks such as mental calculation and working memory (Klimesch, 
Sauseng & Hanslmayr, 2007). Recently the suggestion has been made that 
simultaneous alpha, beta and gamma-band oscillations are required for unified 
cognitive operations such as working memory and perception (Palva & Palva, 
2007). This hypothesis is particularly interesting in light of the cross-frequency 
correlations in NS entropy across these bands illustrated in Fig. 4, where the 
correlations between the alpha and beta band regions were particularly strong.  

Information processing in the brain is thought to rely on oscillatory 
behaviors of distributed brain sites, the simplest being the synchronization and 
desynchronization of brain rhythms like those of the alpha region described 
above. Even at rest, cross-frequency couplings occur between different 
frequencies which may serve as a carrier mechanism for communications across 
brain regions (Jirsa & Muller, 2013).  The evidence for these couplings has largely 
been obtained in individuals, and whether similar couplings dominate for team-
based neurodynamic measures remains an open question. The NS Entropy 
correlation map shown in Fig. 4 highlighted discrete regions of correlation across 
frequencies. Two of the regions were the 8-12 Hz alpha region and the 16-22 Hz 
beta region. The across frequency correlations were similar for these two regions 
which may not be surprising as the mirror neuron complex contains a component 
in the beta region along with one in the alpha region (Pineda, 2008). It should be 
emphasized that the correlations were performed at zero lag and the possibility 
exists that the correlations would change with a timed-lagged analysis. There were 
other discrete regions of NS Entropy correlation including the 1-5 Hz (delta) band, 
a region that has not been identified as having markers of social coordination per 
se, although recent studies have suggested that this region may be associated with 
motivation and emotional states (Schutter & Knyazev, 2012), and in processing 
speech utterances over the period of 1-3 seconds (Ghitza, 2012). Also shown in 
Fig. 4 was a small region of correlation around 28-30 Hz suggesting that NS 
Entropy correlations may be useful for identifying additional social coordination 
markers that arise under particular conditions of team activity.  

The neurodynamic modeling across EEG sensor locations also showed 
contrasting dynamics characterized by both quantitative and qualitative differ-
ences over the same temporal window. The dynamical differences may relate to 
the more selective detection of large scale emergent networks such as the 
sensorimotor, dorsal attention or visual networks by different EEG sensor 
combinations (Chialvo, 2010; Sporn, 2012). Such network activations in turn may 
result from the differential interactions among members of the crew. More precise 
spatial modeling of the cross-frequency couplings by the use of additional EEG 
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sensors, along with more detailed analyses of the relationships between team 
neurodynamic metrics and team member speech and other interactions may begin 
to distinguish between alternatives. 

The mutual information of team dyads provided a different perspective 
of teamwork than did either the NS Entropy of the six-person symbolic 
representations or the IE of individual team members. Our expectation was that 
the summed mutual information of the different dyads in a team might account 
for the neurodynamic symbol entropy that resulted from modeling the overall 
team. While the peaks of MI were consistently near periods of decreased NS 
entropy, the correlations (at zero lag) between MI and either of the entropy 
measures was small and non-significant.  Cross-correlations at different time lags 
showed that the highest correlation between MI and the six-person NS Entropy 
levels (r = -0.2) occurred with a lag of 70s, indicating the need in the future for 
extended correlation analyses.  

Finally, interesting relationships may exist between speech and MI.  
During the Pause segment, the AN spoke most of the time and while the AN-QM 
dyad contributed significant MI toward the beginning of the pause, most of the 
other MI increases resulted from other members of the crew who did not speak. 
Also, most of the dyad pairings containing the AN had low MI levels, particularly 
during the Pause interval and the Debriefing. Combined these data suggest there 
may be an inverse relationship between a person’s speech and the MI levels of the 
dyads this person is a part of, i.e. MI may arise under conditions of synchronic 
rather than diachronic social coordination activities (Tognoli & Kelso, 2015). It 
will be particularly important to extend these studies beyond relationships with 
speech flow, to speech content and speech consistency as we have previously 
performed with NS entropy (Gorman et al., 2015). 
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