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Abstract: Learning trajectories have been developed for 1650 students who solved a series 
of online chemistry problem solving simulations using quantitative measures of the 
efficiency and the effectiveness of their problem solving approaches.  These analyses 
showed that the poorer problem solvers, as determined by item response theory analysis, 
were modifying their strategic efficiency as rapidly as the better students, but did not 
converge on effective outcomes.  This trend was also observed at the classroom level 
with the more successful classes simultaneously improving both their problem solving 
efficiency and effectiveness. A strong teacher effect was observed, with multiple classes of 
the same teacher showing consistently high or low problem solving performance. 
The analytic approach was then used to better understand how interventions designed to 
improve problem solving exerted their effects.  Placing students in collaborative groups 
increased both the efficiency and effectiveness of the problem solving process, while 
providing pedagogical text messages increased problem solving effectiveness, but at the 
expense of problem solving efficiency.   

Keywords: Problem solving; learning trajectories; pedagogical agents; artificial neural 
networks. 

Introduction 

Technology-based learning environments provide the foundation for a new era of 
integrated, learning-centered assessment systems [1]. It is now becoming possible to 
rapidly acquire data about students’ changing knowledge, skill and understanding as they 
engage in real-world complex problem solving, and to create predictive models of their 
performance both within problems [2] as well as across problems and domains [3]. A 
range of analytic tools are being applied in these analyses including Bayesian Nets [4], 
computer adaptive testing based on item response theory (IRT) [5], regression models and 
artificial neural networks (ANN) [6], [7], each of which possesses particular strengths and 
limitations [8].  
How can this data be best put to use? Recent analyses of traditional assessment approaches 
and professional development models indicate that interventions often fail because 
teachers either do not fully understand how to implement them, or are not adequately 
supported in their efforts to implement them [9], [10], [11]. Simply increasing teachers’ 
access to assessment data however, may only exacerbate the challenges that they face in 
crowded classrooms when adapting instruction. Thus, new approaches are needed to 
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provide teachers with accurate, predictive and useful data about their students’ learning in 
ways that are easily and rapidly understood. Data available in real time, that speak to 
process as well as outcomes, and that are intuitively easy to understand would seem to be 
minimum requirements. 
Finding the optimum granular and temporal resolutions for reporting this assessment data 
will be a fundamental challenge for making the data accessible, understandable and useful 
for a diverse audience (e.g. teachers, policy makers and students) as each may have 
different needs across these dimensions [12], [13]. If the model resolution is general and / 
or delayed then important dynamics of learning may be lost or disguised for teachers. If 
the resolution is too complex or the reporting too frequent the analysis will become 
intrusive and cumbersome.  
 
Methods 
 
We have been developing reporting systems for problem solving which are helping to 
measure how strategically students are thinking about scientific problems and whether 
interventions to improve this learning are having the desired effect. The system is termed 
IMMEX (Interactive MultiMedia Exercises), an online library of problem solving science 
simulations that is coupled with layers of probabilistic tools which assess students’ 
problem solving performance, progress, and retention [7],[14], [15], [16], [17], [18]. One 
IMMEX task is called Hazmat, which provides evidence of a student's ability to conduct 
qualitative chemical analyses [19]. IMMEX problems are what Frederiksen [20] referred 
to as “structured problems requiring productive thinking”, meaning that the problems can 
be solved through multiple approaches, and students cannot rely on known algorithms to 
decide which resources are relevant and how the resources should be used.  
Hazmat contains 38 problem cases which involve the same basic scenario but vary in 
difficulty due to the properties of the different unknown compounds being studied. These 
multiple instances provide many opportunities for students to practice their problem 
solving and also provide data for Item Response Theory (IRT) estimates of problem 
solving ability which can be useful for comparing outcomes with more traditional ability 
measures such as grades.  
IMMEX supports detailed assessments of students’ overall problem solving effectiveness 
and efficiency by combining solution frequencies (or IRT estimates) which are outcome 
measures and artificial neural network (ANN) and hidden Markov modeling (HMM) 
performance classifications which provide a strategic dimension [21], [22], [23], [24]. To 
simplify reporting and to make the models more accessible for teachers, these different 
layers of data can be combined into an economics-derived approach which considers 
students’ problem solving decisions in terms of the resources available (what information 
can be gained) and the costs of obtaining the information. Students who review all 
available problem resources are not being very efficient, although they might eventually 
find enough information to arrive at the right answer. Other students might not look at 
enough resources to find the information required to solve the problem, i.e., they are being 
efficient but at the cost of being ineffective. Students demonstrating high strategic 
efficiency should make the most effective problem-solving decisions using the fewest 
number of the resources available. As problem solving skills are gained this should be 
reflected as a process of resource reduction (i.e. higher efficiency) and improved outcomes 
(greater effectiveness) [25]. Over arching these dimensions of efficiency and effectiveness 
is a student’s content knowledge measured by conventional testing practices. 
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Results 
 
The data gathered as students work with IMMEX provide rich, real-time assessment 
information along the efficiency and effectiveness dimensions. Figure 1 shows a modeling 
across schools and teachers/classrooms (66 classrooms, 62,774 performances) where an 
index of strategic efficiency [26] is plotted against an effectiveness (i.e. solution frequency) 
rate. The quadrants generated by intersections of the averages of these measures reflect 1) 
mostly guessing (upper left corner), 2) performances where students view many resources, 
but miss the solution (lower left), 3) performances where many resources are being viewed 
and the problem is being solved (lower right) and 4) the performances where few 
resources are used and the problem is solved (upper right). As expected by the 
visualization format, schools are distributed across the quadrants (Figure 1, left). A second 
level of analysis showing problem solving performance across five teachers as well as 
their classrooms where the different classes of the same teacher are shown by the symbols, 
and the different teachers identified by numbers (Figure 1, right). The clustering of the 
different classrooms of the teachers (for instance, the +’s in the lover left hand corner and 
the squares in the upper right corner), illustrates a significant teacher effect perhaps 
reflecting different instructional methods [25]. Followup classroom observation studies by 
Thadani et al [18] suggest that the teacher’s mental model of the problem space, and 
approach for solving the problem, can have a major effect on the approach adopted by the 
students.   
 

 
Figure 1. Aggregated Efficiency and Effectiveness measures of Schools and 
Classrooms that Performed Hazmat. The dataset was aggregated by schools (left) and 
then by teachers (symbols and text) and classrooms (right) and the efficiency (on a scale of 
0-6) and effectiveness (on a scale of 0-2) measures calculated as described previously [19], 
[20]. The symbol sizes are proportional to the number of performances. Each axis in Figure 
1A is bisected by dotted lines indicating the average efficiency and effectiveness measures of 
the dataset creating quadrant combinations of high and low efficiency and effectiveness. 

Tracking problem solving efficiency and effectiveness as multiple Hazmat problems are 
performed creates a learning trajectory (Figure 2) which is an important formative 
assessment tool showing how students improve with practice [27].  
Learning trajectories show that the poorer problem solvers, as determined by IRT analysis, 
are modifying their strategic efficiency as rapidly as the better students, as shown by the 
position changes along the Efficiency axis, but they are not converging on effective 
outcomes (Figure 2A). Figure 2B shows that this trend can be observed in classrooms as 
well, (e.g. Class 1).  While the more successful classes (e.g. Class 4) simultaneously 
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improved both their problem solving efficiency and effectiveness, the lower performing 
classes showed gains only in efficiency The learning trajectories are also important as 
changes in problem solving progress can be detected after as few as 2-4 student 
performances providing an opportunity for intervention before poor approaches have been 
learned.  For instance, a teacher could initiate an intervention with a smaller group of 
students and after they have performed part of their assignment the teacher can observe 
online whether this was having a positive, negative or neutral effect and either continue or 
modify the intervention. 
 

 
Figure 2. Learning Trajectories of Classes and Students of Different Abilities. A) The 
dataset (n = 62,774) was divided into lower (IRT scores = 3.4 to 49.3) and higher (IRT scores 
= 49.4 to 60.3) Hazmat problem solving ability students and the learning trajectories plotted. B) 
The Efficiency / Effectiveness measures are stepwise plotted for 7 Hazmat performances for 
four representative classes. C) A dataset (82 students, 780 Hazmat performances) for three 
Advanced Placement Chemistry classes was divided into high and low categories based on 
the final course grade and the learning trajectories calculated. 

A similar analysis was conducted for 80 students in three Advanced Placement Chemistry 
students who were separated into the upper and lower halves based on their final course 
grades. Again, the learning trajectories of the lower half of the students showed similar 
increases in strategic efficiency as the upper half of the students, but remained lower in 
effectiveness [28]. Thus from the perspectives of problem solving abilities, course grades, 
and perhaps the instructional environment it would appear that some students may have 
difficulty monitoring their problem solving resulting in decreased outcomes and that 
interventions designed to improve monitoring skills may be useful.  
From a formative assessment perspective learning trajectories can provide evidence as to 
whether interventions adopted to improve learning are working. The learning trajectory for 
students (N = 50,062 performances, -○-) who improved at their own pace is characterized 
by progressive improvement across both the efficiency and effectiveness dimensions 
which begins to plateau after around 4 performances (Figure 3). This plateau mirrors the 
stabilization of strategies and abilities we have previously documented using HMM and 
IRT [21], [22], [23]. 
A second learning trajectory is from students who received text messages that were 
integrated into the prologue of each problem, i.e., before the student began actually 
working on the problem, that were designed to encourage students to reflect on their 
problem solving (n = 11,497 performances, -□-). The messages suggested, for example: 
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“When you read the IMMEX problem, don’t let yourself rush into trying different things. 
Stop and think for a minute first. What have you learned in science class that could help 
you identify the right place to start?” Students who received the metacognitive hints 
became less efficient, meaning that they looked at more problem materials, but they also 
became more effective problem solvers, i.e. they become more cautious or reflective. A 
control group of students (n = 1,215 performances, -●-) also received messages, but here 
the messages were designed to be generic academic advice (e.g., “It’s a good idea to keep 
up with the reading for your science class.”). These students became less efficient as well 
as less effective, i.e. these messages may have been a distraction from their problem 
solving. Thus, the message content was critical to improving students’ problem solving; 
the presence of text messages alone was not helpful. Finally, grouping students into pairs 
(n = 5,577 performances, -■-), improved both the efficiency as well as the effectiveness of 
the problem solving strategies.  
 

 
Figure 3. Hazmat Learning Trajectories. The vertices of effectiveness and efficiency were 
calculated for students in different intervention groups after each of 8 (sequentially numbered) 
Hazmat problem performances [29].  

We recognize that the ultimate power of improved measures of student learning cannot be 
realized if the data presentation for the teacher (and student) does not provide both 
compelling and readily understood results. The online IMMEX Digital Dashboard that is 
now available online is shown in Figure 4. The idea is that teachers gain access to the 
online data mining control as part of their normal login process. The starting point for the 
digital dashboard interface presents a rose petal diagram where each leaf represents a class 
and the length of each petal indicates the number of problem solving performances in each 
class; the shaded area shows the percentage of cases solved. In Figure 4 for example, this 
teacher has 4 classes, and by comparing the shaded areas in the classes represented at 6 
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o’clock and 9 o’clock it is apparent that the first class is solving more cases than the 
second.  

 
Figure 4. Sample Layout for IMMEX Data Dashboard for Reporting Student Performance to 
Teachers 

Clicking on each petal (shown for the class at 3 o’clock) brings up a display for that class 
showing the distribution (described in Figure 1) of students across the four efficiency / 
effectiveness quadrants which when clicked again provides details for each student in the 
class. Teacher’s attention is therefore drawn to students requiring specific forms of help 
and this can be supplemented by incorporating intelligent annotations highlighting 
subsections of data. After viewing this information, the teacher may choose to provide a 
form of differentiated instruction to individual students, groups of students or entire 
classes before having them continue to problem solve. 
 
 
Discussion 
 
These studies show that technology can provide dynamic models of what students are 
doing as they learn problem solving without creating a burden on educational systems. 
While illustrated for chemistry, such models are applicable to other problem solving 
systems where learning progress is tracked longitudinally. When shared with teachers and 
students in real time [30] they can provide a roadmap for better instruction by highlighting 
problem solving processes and progress and documenting the effects of classroom 
interventions and instructional modifications. The differences observed across schools, 
teachers and student abilities shifts the focus to the classroom and may provide a means 
for matching students and instruction or matching teachers with professional development 
activities.  
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