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INTRODUCTION 

Nationwide there is a need for cost-effective training 
solutions that are highly automated, adaptable, and capable of 
producing quantifiable behavioral changes in teams that are 
indicative of deep learning.  In contrast to what is known 
about individual skill acquisition and persistence, relatively 
little is known about how team process skills develop; how 
well these skills once learned in one context transfer to 
another context; how long the skills persist when unused; and, 
what interventions or training will most rapidly restore them?  

Answering these questions is challenging due to the 
limited number of quantitative teamwork measures that track 
team performance, cohesion and flexibility across teams, time, 
environments and training protocols. Adopting a scientific 
approach for studying the effects of training interventions is 
problematic without theory and methods that are aligned and 
capable of representing and capturing the dynamics of team 
performance.   

A confluence of new technologies will soon generate 
enormous amounts of new data at an unprecedented level of 
detail about teams.  But these data will also raise questions of 
their own; principally how researchers will make sense of the 
expected onslaught of data and derive general organizing 
principles that guide the co-evolution of the complex team and 
task interactions. This suggests the need for novel methods 
and ways of thinking about team dynamics and measurement. 

Our goals are to speculate, given where we are, 
where the measurement and assessment of learning and 
performance of teams and of individuals in teams might go in 
the next decade and how we might get there.  As such, some 
sample ‘Big’ Questions’ that the panelists were asked to 
consider in their presentations include: 

 What types of high and low level data abstractions 
might provide the most useful quantitative 
information about teamwork?   

 Across which biologic and interpersonal scales of 
teamwork will the strongest information flows be 
found?  

 Can dynamical clues tell us how well a team is 
performing / will perform? 

 In addition to performance assessment, what can we 
learn from dynamics about team flexibility, cohesion, 
leadership, and resilience? 

 How can we disentangle individual contributions 
from the team contribution and accurately measure 
them? 

PANELIST ABSTRACTS 

Toward Quantitative Descriptions of the Neurodynamic 
Organizations of Teams 

Ron Stevens 
UCLA School of Medicine, 

The Learning Chameleon, Inc. 

Advances in our understanding of the learning 
process used by teams while they develop and refine their 
team skills have been slowed by a lack of easily understand-
able quantitative approaches that can objectively and 
automatically assess collective learning processes and 
outcomes over time in training situations. 

We have developed symbolic models of teamwork 
that capture the brainwave levels of each person of the team, 
and situates them in the context of the levels of other team 
members as well as the immediate context of the task.  
Quantitative estimates of the symbol variations in the data 
stream are then made using a moving window of entropy 
approach.  Periods of decreased entropy represent times of 
increased team neurodynamic organization when there were 
prolonged and restricted neurodynamic relationships across 
members of the teams. 

Using this approach we have shown that (a) the 
neurodynamic rhythms of six-person US Navy submarine 
navigation teams are measurable and are entrained by the task 
(Stevens, Gorman, Amazeen, Likens & Galloway, 2013);  (b) 
the structure of these rhythms is multifractal, resulting from 
the meso and micro responses of teams to changes in the task 
and the sharing of information across the crew (Likens, 
Amazeen, Stevens, Galloway & Gorman, 2014); and (c) 
quantitative differences in team’s neurodynamic rhythms are 
linked with team expertise, resilience, and communication 
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(Stevens & Galloway, 2014). Consistent with the nonlinear 
dynamical systems concepts of elasticity and rigidity in 
complex adaptive systems, the expert navigation teams were 
positioned at an organizational neurodynamic point midway 
between rigid and elastic.  These findings suggest the 
existence of team-related neurodynamical processes that 
quantitatively track across the novice-expert continuum.  
 

Team Performance at the Level of Emergent, Dynamic 
Coordinative Relations 

 
Jamie C. Gorman 

Georgia Institute of Technology 
 
 In a recent series of experiments on dyadic, 
interpersonal coordination, we found that the tendency to 
spontaneously synchronize one’s movements with those of a 
teammate can interfere with human performance in team tasks 
like assisted suturing and knot tying (Gorman & Crites, 2014).  
Namely, we found that the ability to decouple the hands, such 
that they move independently (i.e., to not synchronize), is 
fundamental to tying skill and is presumably acquired from an 
early age.  In the context of unfamiliar, dyadic tying, however, 
participants were unable to fight the spontaneous tendency to 
synchronize their hand movements, which hurt team 
performance.  How do we account for phenomena such as this 
in the science of team learning?  This example is meant to 
illustrate the need for team skill acquisition and assessment to 
account for high-level, emergent coordinative relations, such 
as “sync” (Strogatz, 2003) that structure team performance 
beyond the control of the individual. 

Interpersonal tying provides a relatively simple 
example of how emergent, dynamic coordinative relations 
structure team performance, but we see the same phenomena 
at work in more complex, cognitive settings, such as 
intelligence analysis and planning and team command-and-
control.  In those situations, team members self-organize 
“cognitive-behavioral” (e.g., communication) patterns without 
being consciously aware of it (Dunbar & Gorman, 2014).  We 
think the key to understanding how emergent coordinative 
relations shape team performance is in identifying the 
mathematical and statistical dynamics (e.g., sync; self-
organization) that occur as team members interact.  In the next 
decade, this approach will not produce new models of shared 
cognition but will be characterized by mathematical models 
that go beyond the individual mental state or top-down 
knowledge with the goal of understanding how general 
coordinative mechanisms structure team performance.  Such 
models will also have implications for understanding how 
individual psychological processes are structured by emergent, 
coordinative relations (Gorman, 2014). 

This dynamic approach to understanding team 
performance has already provided novel predictions and ways 
of thinking about enhancing team performance, including 
enhancing team flexibility and resilience.  I will briefly 
describe research conducted using the dynamic perspective 
that has already provided new insights into how teams 
develop, what develops, and how to enhance transfer to novel 
contexts during skill acquisition in both motor-perceptual and 

cognitive-behavioral tasks.  I will link these results together by 
briefly describing the common theoretical core that underlies 
them, and I will briefly describe the types of models and 
methodologies that are needed to understand team perform-
ance at the level of emergent, dynamic coordinative relations. 

 
Communication Dynamics for Team Assessment 

 
Nancy J. Cooke 

Arizona State University 
 
 Teams can be viewed as complex dynamic systems 
made up of interacting components that are systems 
themselves.  As effective teams learn, not only does their 
performance improve, but their team process behaviors evolve 
to become more flexible, adaptive, and resilient.  These 
process dynamics have been linked to team effectiveness 
(Cooke, Gorman, Myers, & Duran, 2013).Therefore 
assessment of team learning can benefit from an under-
standing of the dynamics of team interactions.  Team 
interactions often take place through communication, though 
there are other forms of interaction that are nonverbal 
including gestures, facial expressions, and implicit interaction.  
Of these data sources, communication is the most straight-
forward to collect and therefore, most commonly collected.   
Communication data can be collected unobtrusively. There are 
also opportunities to analyze communication data in near-real 
time for continuous monitoring of team learning and rapid 
intervention.  For instance, metrics based on communication 
flow from person to person or amount of communication, are 
amenable to this real-time processing (Cooke & Gorman, 
2009).   Research is needed on the association between 
communication dynamics and effective team process and 
performance in various contexts.  Ultimately the discovery of 
communication dynamics signatures linked to specific process 
and performance across contexts would allow for impactful 
and timely interventions. 

For example, recent studies in my lab of human-
synthetic teammate teams in the unmanned aerial system 
context suggest that coordination can be impacted by a single 
team member who knows the ideal communication push and 
pull.  Future team training may benefit from synthetic team-
mates that are able to serve the role of coordination coach.   
 

Synchronization of Autonomic Arousal in Dyads and 
Teams 

 
Stephen J. Guastello 
Marquette University 

 
Physiological synchronization of autonomic arousal 

between people is thought to be an important component of 
work team coordination and other interpersonal dynamics. The 
group dynamics, in turn, contribute to workload and fatigue 
effects at the group level in addition to the individually-
defined work assignments.  

The minimum requirements for two living or non-
living entities to synchronize are two oscillators, a feedback 
loop between them, and a control parameter that speeds up the 
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process (Strogatz, 2003). When speed reaches a critical level, 
a phase shift occurs such that the system goes into phase-lock. 
The first challenges for operationalizing these principles to 
human systems include identifying the nature of the 
oscillators, the feedback loop, and the control parameter. In 
the prototype, the feedback is reciprocal between the two 
oscillating entities. In human systems such as interactions in 
conversations, both one-way and two-way influences are 
possible. The coupling is generally loose and moderated by 
the empathy levels of the two parties (Guastello, Pincus & 
Gunderson, 2006; Marci, Ham, Moran, & Orr, 2007). 

Analytic challenges include: (a) determining the 
statistical time series models that capture the dynamics of the 
teams’ interaction patterns, (b) finding the optimal lag length 
between observations for structuring the models, and (c) con-
necting synchronization parameters to performance variables, 
subjective ratings of workload and other group dynamics, and 
individual differences of the contributing group members. 
Equation 1, for instance, is capable of registering self-
organizing and chaotic processes, and it identified the syn-
chronization links in the sample of dyads more often and with 
greater accuracy compared to a linear alternative. In Eq. 1 

z2 = A exp(Bz1) + exp(CP1)      (1) 

z is the normalized behavior (autonomic arousal) of the target 
person at two successive points in time, P is the normalized 
behavior of the partner at time 1, and A, B, and C are nonlinear 
regression weights (Guastello et al., 2006).   

Lag length denotes how much real time is required to 
elapse between the two measurements in order to observe the 
coupling effect.  A measurement at time 2 is a function of 
itself at time 1 and a coupling effect from another source also 
at time 1. In a vigilance dual task experiment, 73 undergrad-
uates worked in pairs for 90 min while galvanic skin responses 
(GSR) were recorded. Event rates on the vigilance task either 
increased or decreased without warning during the work 
period. Results based on two criteria supported a lag value of 
20 sec (Guastello, Reiter & Malon, in press).  

The properties of the linear and nonlinear (Eq.1) 
autoregressive models, with and without a synchronization 
component were examined. All models were more accurate at 
a lag of 20 sec compared to customized lag lengths. Although 
the linear models were more accurate overall by a margin of 4-
13% of variance accounted for, the nonlinear synchronization 
parameters were more often related to psychological variables 
and performance. (Guastello, in press).  Importantly, greater 
synchronization was observed with the nonlinear model when 
the target event rate increased, compared to when it decreased, 
which was expected from the general theory of synchroniza-
tion. Equation 1 was also more effective for uncovering 
inhibitory or dampening relationships between the co-workers 
as well as mutually excitatory relationships.  

The latest study on this theme involves teams of four 
people who play an emergency response (ER) game against a 
single opponent, all with GSR recordings. An example data 
stream appears in Figure 1. The participants appear to be in 
phase lock. The generalizability of this result remains to be 
determined. The adaptive value of high levels of synchrony 
has also been questioned (Stevens, Galloway, & Lamb, 2014). 

Figure 1. GSR readings for five people in an ER game. 

As with many games, the ER team and opponent take 
turns. It now appears that the optimal lag length is much 
shorter for this task. The ER team members are synchronized 
with each other and also with the opponent thus producing the 
cluster of linkages shown in Figure 2. 

Figure 2. Linkages between ER team members and opponent. 

Future research should dissect the experimental tasks 
to identify the primary oscillators, feedback loops, possible 
control parameters, and conditions that induce higher levels of 
synchronization and involve different types of internal group 
coordination. Analyses of biometrics need to go beyond dis-
crete event-related potentials, which are commonly used, to 
focus instead on continuous streams of data and the analysis of 
dynamics therein. The dynamics can then be related to qualita-
tive variables of interest, such as coordination behavior, 
communication events, workload manipulations, and ratings 
of group processes, thereby building a comprehensive bio-
psychosocial model and generalizable theory. 

Collaborative Assessments and Data Analysis 

Alina A. von Davier 
Educational Testing Service 

Educational measurement is undergoing dramatic 
change at all levels, with new directions in assessment of 
individuals and groups. Some of the most innovative and 
exciting features involve conversation-based, technology-
enhanced learning and assessment tools in the areas of 
collaborative assessment, game-based learning, and 
simulation-based training. Among the advantages of these 
approaches is that they support learning of cognitive, social 
and affective skills within a common framework and allow for 
a detailed collection of the process data in addition to the usual 
outcome data in structured log files. Collaborative assessments 
in game-like environments integrate many of these different 
approaches and tools (Liu, von Davier, Hao, Kyllonen, 
Zapata-Rivera, 2014). 

Collaboration is one of the skills identified as the 
“21st-century skills” and it receives attention among stake-
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holders in both higher education and the workplace. The 
OECD (OECD, 2013) included a test of collaborative problem 
solving skills in its PISA 2015 survey of critical skills. 
Collaborative assessment is also being promoted by a global 
initiative called Assessment and Teaching of 21st Century 
Skills, a partnership among Cisco, Intel, Microsoft and the 
University of Melbourne to prepare students to live and work 
in information-age societies. 
 The questions for the educational specialists revolve 
around the measurement issues: how can we measure 
accurately individual contributions to team success? Shall 
collaborative tests be domain specific or are the collaborative 
problem solving skills transferable from one domain to 
another? How can we integrate the data from the dynamic 
process of collaboration and the outcome test data and build 
valid measurement models? 
 Collaborative interactions in computerized 
educational environments produce data of extraordinarily high 
dimensionality (often containing more variables than people 
for whom those variables are measured). Extracting key 
features from the noise in such data is crucial not only to make 
analysis computationally tractable (Masip, Minguillon, & 
Mor, 2011), but also to extract relevant features of student 
performance from the noise surrounding them (Kim et al., 
2008). Nowadays, with the technological advantages of 
systems for recording, capturing, and recognition (e.g., Kinect 
for Windows) of multimodal data, the data from collaborative 
interactions contain discourse, actions, gestures, tone, body 
language that result in a deluge of data (See Figure 3). 
To these types of data we can further add the neurodata 
collected with (portable) EEG headsets. One way to attempt to 
find patterns among these different types of data is to make 
use of data mining techniques. 
 Data mining does not have a long history in educa-
tion or psychology because, until recently, educational and 
psychological data were not often of high enough dimension-
ality to require such techniques. However, these techniques 
have been used for decades in fields where data with high 
dimensionality has long been the norm, such as finance, 
marketing, medicine, astronomy, physics, chemistry, and 
computer science (Frawley, Piateski-Shapiro, & Matheus, 
1992).  The purpose of data mining techniques is to reduce the 
dimensionality of the dataset something more manageable 
(Hand, Mannila, & Smyth, 2001) by extracting implicit, 
interesting, and interpretable patterns (Frawley et al,  1992) in 
order to allow research questions to be addressed that would 
not otherwise be feasible (Romero et al., 2011). Data mining 
methods as those developed by Kerr (in press) and Kerr and 
Chung (2012) can be applied to identify patterns of 
interactions and strategies of success in collaborative problem 
solving tasks.  

In one of the recent pilot applications at Educational 
Testing Service (ETS), we analyzed the behavioral 
convergence of test takers in dyads in a science collaborative 
problem solving assessment task, the Tetralogue (Luna-
Bazldua, Khan, von Davier, Hao, Liu, Wang, 2015) – see 
Figure 3. In order to study evidence of behavioral 
convergence, features from log files and video data of 24 
study participants were represented as a multi-dimensional 

behavioral feature vector composed of cognitive behaviors 
(such as the number of messages among the dyad members, 
the number of requests for help from the system) and non-
cognitive behaviors (such as engagement, hand-on-face, 
anxiety, curiosity, anger, joy, contempt and surprise).     

 

 
Figure 3. Multimodal data capture including video and action log 
files while participants solve a problem collaboratively (using the 
ETS’ Tetralogue platform). 

 
A hierarchical cluster analysis was performed on an 

Euclidean distance matrix (i.e., a similarity matrix) computed 
from the multidimensional behavioral feature data of the study 
participants. The cluster analysis revealed that members in the 
same dyad tended to group together from the beginning of the 
clustering process (i.e., they will be closer to each other in the 
feature space than to others). We believe this observed pattern 
of agglomeration of the dyad partners could be interpreted as 
evidence of convergence of cognitive and non-cognitive states 
when people interact in a collaborative task. 

Other methods can be considered on these rich data 
that exhibit time dependence at the individual level are multi-
variate stochastic processes, time processes, and dynamic 
models. Some of these models can accommodate analyzing 
the interactions among multiple team members (von Davier & 
Halpin, 2013; Halpin & von Davier, 2013); other models are 
more appropriate for analyzing the states of collaborative 
events (Soller & Stevens, 2007).   
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